
The Role of Software Licenses in

Open Architecture Ecosystems

Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

{alspaugh,hasuncion,wscacchi}@ics.uci.edu

Abstract. The role of software ecosystems in the development and evo-
lution of open architecture systems has received insufficient consider-
ation. Such systems are composed of heterogeneously-licensed compo-
nents, open source or proprietary or both, in an architecture in which
evolution can occur by evolving existing components or by replacing
them. The software licenses of the components both facilitate and con-
strain the system’s ecosystem, and the rights and duties of the licenses are
crucial in producing an acceptable system. We discuss software ecosys-
tems of open architecture systems from the perspective of an architect
or an acquisition organization, and outline how our automated tool and
environment help address their challenges, support reuse, and assist in
managing coevolution and component interdependence.

1 Introduction

A substantial number of development organizations are adopting a strategy in
which a software-intensive system is developed with an open architecture (OA)
[1], whose components may be open source software (OSS) or proprietary with
open application programming interfaces (APIs). Such systems evolve not only
through the evolution of their individual components, but also through replace-
ment of one component by another, possibly from a different producer or under
a different license. With this approach, the organization becomes an integrator
of components largely produced elsewhere, connected with shims as necessary to
achieve the desired result. An OA development process results in an ecosystem
in which the integrator is influenced from one direction by the goals, interfaces,
license choices, and release cycles of the component producers, and in another
direction by the needs of its consumers. As a result the software components
are reused more widely, and the resulting OA systems can achieve reuse benefits
such as reduced costs, increased reliability, and potentially increased agility in
evolving to meet changing needs. An emerging challenge is to realize the benefits
of this approach when the individual components are heterogeneously licensed,
each potentially with a different license, rather than a single OSS license as in
uniformly-licensed OSS projects or a single proprietary license as in proprietary
development.



This challenge is inevitably entwined with the software ecosystems that arise
for OA systems. We find that an OA software ecosystem involves organizations
and individuals producing and consuming components, and supply paths from
producer to consumer; but also

– the OA of the system(s) in question,
– the open interfaces met by the components,
– the degree of coupling in the evolution of related components, and
– the rights and obligations resulting from the software licenses under which

various components are released, that propagate from producers to con-
sumers.

Producers

Components

Integrators

OA Systems

System

Consumers

Mozilla 
Foundation

Thunderbird

license

Firefox

license

Gnome

Gnome 
Foundation

license

AbiWord

AbiSource 
Community

license

WordPerfect

Corel

license

Independent 
Software 
Vendors

Government 
Contractors

sys. rights, 
obligations

sys. rights, 
obligations

sys. rights, 
obligations

Fig. 1. A hypothetical ecosystem in which OA systems are developed

In order to most effectively use an OA approach in developing and evolving
a system, it is essential to consider this OA ecosystem. An OA system draws
on components from proprietary vendors and open source projects. Its archi-
tecture is made possible by the existing general ecosystem of producers, from
which the initial components are chosen. The choice of a specific OA begins
a specialized software ecosystem involving components that meet (or can be
shimmed to meet) the open interfaces used in the architecture. We do not claim



this is the best or the only way to reuse components or produce systems, but
it is an ever more widespread way. In this paper we build on previous work on
heterogeneously-licensed systems [2–4] by examining how OA development af-
fects and is affected by software ecosystems, and the role of component licenses
in OA software ecosystems.

A motivating example of this approach is the Unity game development tool,
produced by Unity Technologies [5]. Its license agreement, from which we quote
below, lists eleven distinct licenses and indicates the tool is produced, apparently
using an OA approach, using at least 18 externally produced components or
groups of components:

1. The Mono Class Library, Copyright 2005-2008 Novell, Inc.

2. The Mono Runtime Libraries, Copyright 2005-2008 Novell, Inc.

3. Boo, Copyright 2003-2008 Rodrigo B. Oliveira

4. UnityScript, Copyright 2005-2008 Rodrigo B. Oliveira

5. OpenAL cross platform audio library, Copyright 1999-2006 by authors.

6. PhysX physics library. Copyright 2003-2008 by Ageia Technologies, Inc.

7. libvorbis. Copyright (c) 2002-2007 Xiph.org Foundation

8. libtheora. Copyright (c) 2002-2007 Xiph.org Foundation

9. zlib general purpose compression library. Copyright (c) 1995-2005 Jean-loup

Gailly and Mark Adler

10. libpng PNG reference library

11. jpeglib JPEG library. Copyright (C) 1991-1998, Thomas G. Lane.

12. Twilight Prophecy SDK, a multi-platform development system for virtual reality

and multimedia. Copyright 1997-2003 Twilight 3D Finland Oy Ltd

13. dynamic bitset, Copyright Chuck Allison and Jeremy Siek 2001-2002.

14. The Mono C# Compiler and Tools, Copyright 2005-2008 Novell, Inc.

15. libcurl. Copyright (c) 1996-2008, Daniel Stenberg <daniel@haxx.se>.

16. PostgreSQL Database Management System

17. FreeType. Copyright (c) 2007 The FreeType Project (www.freetype.org).

18. NVIDIA Cg. Copyright (c) 2002-2008 NVIDIA Corp.

An OA system can evolve by a number of distinct mechanisms, some of which
are common to all systems but others of which are a result of heterogeneous
component licenses in a single system.
By component evolution— One or more components can evolve, altering the
overall system’s characteristics.
By component replacement— One or more components may be replaced
by others with different behaviours but the same interface, or with a different
interface and the addition of shim code to make it match.
By architecture evolution— The OA can evolve, using the same components
but in a different configuration, altering the system’s characteristics. For exam-
ple, as discussed in Section 4, changing the configuration in which a component
is connected can change how its license affects the rights and obligations for the
overall system.
By component license evolution— The license under which a component
is available may change, as for example when the license for the Mozilla core

chuck
Highlight



components was changed from the Mozilla Public License (MPL) to the current
Mozilla Disjunctive Tri-License; or the component may be made available under
a new version of the same license, as for example when the GNU General Public
License (GPL) version 3 was released.
By a change to the desired rights or acceptable obligations— The OA
system’s integrator or consumers may desire additional license rights (for exam-
ple the right to sublicense in addition to the right to distribute), or no longer
desire specific rights; or the set of license obligations they find acceptable may
change. In either case the OA system evolves, whether by changing components,
evolving the architecture, or other means, to provide the desired rights within
the scope of the acceptable obligations. For example, they may no longer be will-
ing or able to provide the source code for components within the reciprocality
scope of a GPL-licensed module.

The interdependence of integrators and producers results in a co-evolution of
software within an OA ecosystem. Producers may manage their evolution with
a loose coordination among releases, for example as between the Gnome and
Mozilla organizations. Releases of producer components create a tension through
the ecosystem relationships with the releases of OA systems using those compo-
nents, as integrators accomodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work [4], license
rights and obligations are manifested at each component’s interface, then medi-
ated through the system’s OA to entail the rights and corresponding obligations
for the system as a whole. As a result, integrators must frequently re-evaluate
an OA system’s rights and obligations. In contrast to homogeneously-licensed
systems, license change across versions is a characteristic of OA ecosystems, and
architects of OA systems require tool support for managing the ongoing licensing
changes.

We propose that such support must have several characteristics.
– It must rest on a license structure of rights and obligations (Section 5),

focusing on obligations that are enactable and testable. For example, many
OSS licenses include an obligation to make a component’s modified code
public, and whether a specific version of the code is public at a specified
Web address is both enactable (it can be put into practice) and testable. In
contrast, the GPL v.3 provision “No covered work shall be deemed part of an
effective technological measure under any applicable law fulfilling obligations
under article 11 of the WIPO copyright treaty” is not enactable in any
obvious way, nor is it testable — how can one verify what others deem?

– It must take account of the distinctions between the design-time, build-
time, and distribution-time architectures (Sections 4, 5, 6) and the rights
and obligations that come into play for each of them.

– It must distinguish the architectural constructs significant for software li-
censes, and embody their effects on rights and obligations (Section 4).

– It must define license architectures (Section 6).
– It must provide an automated environment for creating and managing li-

cense architectures. We are developing a prototype that manages a license
architecture as a view of its system architecture [4].



– Finally, it must automate calculations on system rights and obligations so
that they may be done easily and frequently, whenever any of the factors
affecting rights and obligations may have changed (Section 7).

In the remainder of this paper, we survey some related work (Section 2),
provide an overview of OSS licenses and projects (Section 3), define and discuss
characteristics of open architectures (Section 4), introduce a structure for licenses
(Section 5), outline license architectures (Section 6), sketch our approach for
license analysis (Section 7), and conclude (Section 8).

2 Related Work

Jansen et al. discuss the perspective of software vendors on software ecosystems
[6]. Scacchi examines how free/open source software projects become part of a
multi-project ecosystem, interdependent in the context of evolution and reuse
[7]. The present work examines the point of view of organizations that develop
or acquire OA systems.

Brown and Booch discuss issues that arise in the reuse of OSS components,
such as that interdependence causes changes to propagate, and versions of the
components evolve asynchronously giving rise to co-evolution of interrelated code
in the OA [8]. If the components evolve, the OA system itself is evolving. The
evolution can also include changes to the licenses, and the licenses can change
from version to version.

Ven and Mannaert discuss the challenges independent software vendors face
in combining OSS and proprietary components, with emphasis on how OSS
components evolve and are maintained in this context [9].

Scacchi and Alspaugh examine the features of software architecture and OSS
licenses that affect the success of an OA strategy [3].

There are a number of discussions of OSS licenses, such as Rosen [10] and
Fontana et al. [11].

3 Open-Source Software (OSS)

Traditional proprietary licenses allow a company to retain control of software it
produces, and restrict the access and rights that outsiders can have. OSS licenses,
on the other hand, are designed to encourage sharing and reuse of software,
and grant access and as many rights as possible. OSS licenses are classified as
academic or reciprocal. Academic OSS licenses such as the Berkeley Software
Distribution (BSD) license, the Massachusetts Institute of Technology license,
the Apache Software License, and the Artistic License, grant nearly all rights
to components and their source code, and impose few obligations. Anyone can
use the software, create derivative works from it, or include it in proprietary
projects. Typical academic obligations are simply to not remove the copyright
and license notices.



Reciprocal OSS licenses take a more active stance towards sharing and reusing
software by imposing the obligation that reciprocally-licensed software not be
combined (for various definitions of “combined”) with any software that is not
in turn also released under the reciprocal license. The goals are to increase the
domain of OSS by encouraging developers to bring more components under its
aegis, and to prevent improvements to OSS components from vanishing behind
proprietary licenses. Example reciprocal licenses are GPL, the Mozilla Public
License (MPL), and the Common Public License,

Both proprietary and OSS licenses typically disclaim liability, assert no war-
ranty is implied, and obligate licensees to not use the licensor’s name or trade-
marks. Newer licenses often cover patent issues as well, either giving a restricted
patent license or explicitly excluding patent rights.

The Mozilla Disjunctive Tri-License licenses the core Mozilla components
under any one of three licenses (MPL, GPL, or the GNU Lesser General Public
License LGPL); OSS developers can choose the one that best suits their needs
for a particular project and component.

The Open Source Initiative (OSI) maintains a widely-respected definition of
“open source” and gives its approval to licenses that meet it [12]. OSI maintains
and publishes a repository of approximately 70 approved OSS licenses.

Common practice has been for an OSS project to choose a single license
under which all its products are released, and to require developers to contribute
their work only under conditions compatible with that license. For example, the
Apache Contributor License Agreement grants enough of each author’s rights
to the Apache Software Foundation for the foundation to license the resulting
systems under the Apache Software License. This sort of rights regime, in which
the rights to a system’s components are homogenously granted and the system
has a single well-defined OSS license, was the norm in the early days of OSS and
continues to be practiced.

4 Open Architecture (OA)

Open architecture (OA) software is a customization technique introduced by
Oreizy [1] that enables third parties to modify a software system through its
exposed architecture, evolving the system by replacing its components. Increas-
ingly more software-intensive systems are developed using an OA strategy, not
only with OSS components but also proprietary components with open APIs
(e.g. [5]). Using this approach can lower development costs and increase relia-
bility and function [3]. Composing a system with heterogeneously-licensed com-
ponents, however, increases the likelihood of conflicts, liabilities, and no-rights
stemming from incompatible licenses. Thus, in our work we define an OA sys-
tem as a software system consisting of components that are either open source

or proprietary with open API, whose overall system rights at a minimum allow

its use and redistribution, in full or in part.
It may appear that using a system architecture that incorporate OSS com-

ponents and uses open APIs will result in an OA system. But not all such



architectures will produce an OA, since the (possibly empty) set of available
license rights for an OA system depends on: (a) how and why OSS and open
APIs are located within the system architecture, (b) how OSS and open APIs
are implemented, embedded, or interconnected, and (c) the degree to which the
licenses of different OSS components encumber all or part of a software system’s
architecture into which they are integrated [3, 13].

The following kinds of software elements appearing in common software ar-
chitectures can affect whether the resulting systems are open or closed [14].

Software source code components—These can be either (a) standalone
programs, (b) libraries, frameworks, or middleware, (c) inter-application script
code such as C shell scripts, or (d) intra-application script code, as for creating
Rich Internet Applications using domain-specific languages such as XUL for the
Firefox Web browser [15] or “mashups” [16]. Their source code is available and
they can be rebuilt. Each may have its own distinct license.

Executable components—These components are in binary form, and the
source code may not be open for access, review, modification, or possible redis-
tribution [10]. If proprietary, they often cannot be redistributed, and so such
components will be present in the design- and run-time architectures but not in
the distribution-time architecture.

Software services—An appropriate software service can replace a source
code or executable component.

Application programming interfaces/APIs—Availability of externally
visible and accessible APIs is the minimum requirement for an “open system”
[17]. APIs are not and cannot be licensed, and can limit the propagation of
license obligations.

Software connectors—Software whose intended purpose is to provide a
standard or reusable way of communication through common interfaces, e.g.
High Level Architecture [18], CORBA, MS .NET, Enterprise Java Beans, and
GNU Lesser General Public License (LGPL) libraries. Connectors can also limit
the propagation of license obligations.

Methods of connection—These include linking as part of a configured sub-
system, dynamic linking, and client-server connections. Methods of connection
affect license obligation propagation, with different methods affecting different
licenses.

Configured system or subsystem architectures—These are software
systems that are used as atomic components of a larger system, and whose in-
ternal architecture may comprise components with different licenses, affecting
the overall system license. To minimize license interaction, a configured sys-
tem or sub-architecture may be surrounded by what we term a license firewall,
namely a layer of dynamic links, client-server connections, license shims, or other
connectors that block the propagation of reciprocal obligations.

Figure 2 shows a high-level view of a reference architecture that includes
all the kinds of software elements listed above. This reference architecture has
been instantiated in a number of configured systems that combine OSS and
closed source components. One such system handles time sheets and payroll



Web Browser 

User Interface

Email & Calendar 

User Interface

Word Processor 

User Interface

Web 

Browser

Email & 

Calendar

Local 

Server

Operating 

System
Web App 

Server

Word 

Processor

Inter-

Application 

Scripting

Middle-

ware 1

Network 

Protocol

Connector 1 Connector 2 Connector 3

API 1

API 2 API 3

API 4

Intra-

Application 

Scripting

Fig. 2. Reference architecture for a heterogeneously-licensed e-business system; con-
nectors (which have no license) are italicized

at our university; another implements the web portal for a university research
lab (http://proxy.arts.uci.edu/gamelab/). The configured systems consist
of software components such as a Mozilla Web browser, Gnome Evolution email
client, and WordPerfect word processor, all running on a Linux operating system
accessing file, print, and other remote networked servers such as an Apache Web
server. Components are interconnected through a set of software connectors that
bridge the interfaces of components and combine the provided functionality into
the system’s services.

5 Software Licenses

Copyright law is the common basis for software licenses, and gives the original
author of a work certain exclusive rights: the rights to use, copy, modify, merge,
publish, distribute, sub-license, and sell copies. The author may license these
rights, individually or in groups, to others; the license may give a right either
exclusively or non-exclusively. After a period of years, copyright rights enter the
public domain. Until then copyright may only be obtained through licensing.

Licenses typically impose obligations that must be met in order for the li-
censee to realize the assigned rights. Common obligations include the obligation
to publish at no cost any source code you modify (MPL) or the reciprocal obliga-
tion to publish all source code included at build-time or statically linked (GPL).



Fig. 3. Instance architecture for a heterogeneously-licensed e-business system

The obligations may conflict, as when a GPL’d component’s reciprocal obligation
to publish source code of other components is combined with a proprietary com-
ponent’s license prohibition of publishing its source code. In this case, no rights
may be available for the system as a whole, not even the right of use, because
the two obligations cannot simultaneously be met and thus neither component
can be used as part of the system.

The basic relationship between software license rights and obligations can be
summarized as follows: if the specified obligations are met, then the correspond-
ing rights are granted. For example, if you publish your modified source code
and sub-licensed derived works under MPL, then you get all the MPL rights for
both the original and the modified code. However, license details are complexm
subtle, and difficult to comprehend and track—it is easy to become confused or
make mistakes. The challenge is multiplied when dealing with configured system
architectures that compose a large number of components with heterogeneous
licenses, so that the need for legal counsel begins to seem inevitable [10, 11].

We have developed an approach for expressing software licenses that is more
formal and less ambiguous than natural language, and that allows us to cal-
culate and identify conflicts arising from the rights and obligations of two or
more component’s licenses. Our approach is based on Hohfeld’s classic group of
eight fundamental jural relations [19], of which we use right, duty, no-right, and
privilege. We start with a tuple <actor, operation, action, object> for expressing



Web Browser 

User Interface

Email & Calendar 

User Interface

Word Processor 

User Interface

Mozilla 
Foundation

Gnome 
Foundation

Local 

Server

Red Hat / 
Free 

Software 
Foundation

Apache 
Foundation

Corel

Inter-

Application 

Scripting

Middle-

ware 1

Network 

Protocol

Connector 1 Connector 2 Connector 3

API 1

API 2 API 3

API 4

Intra-

Application 

Scripting

Fig. 4. Reference architecture components supplied by an organization, indicating the
integrator’s dependencies on suppliers, mediated by interfaces and licenses

a right or obligation. The actor is the “licensee” for all the licenses we have
examined. The operation is one of the following: “may”, “must”, “must not”,
or “need not”, with “may” and “need not” expressing rights and “must” and
“must not” expressing obligations. Because copyright rights are only available to
entities who have been granted a sublicense, only the listed rights are available,
and the absence of a right means that it is not available. The action is a verb or
verb phrase describing what may, must, must not, or need not be done, with the
object completing the description. A license may be expressed as a set of rights,
with each right associated with zero or more obligations that must be fulfilled
in order to enjoy that right. Figure 5 displays the tuples and associations for
two of the rights and their associated obligations for the academic BSD software
license. Note that the first right is granted without corresponding obligations.

Heterogeneously-licensed system designers have developed a number heuris-
tics to guide architectural design while avoiding some license conflicts. First, it is
possible to use a reciprocally-licenced component through a license firewall that
limits the scope of reciprocal obligations. Rather than connecting conflicting
components directly through static or other build-time links, the connection is
made through a dynamic link, client-server protocol, license shim (such as a Lim-
ited General Public License connector), or run-time plug-ins. A second approach
used by a number of large organizations is simply to avoid using any reciprocally-
licensed components. A third approach is to meet the license obligations (if that



<Licensee, may, use, the binary form of COMPONENT>

<Licensee, may, redistribute, derived or collective works in binary form of COMPONENT>

<Licensee, must, retain, copyright notices in the binary form of COMPONENT>

<Licensee, must, retain, the BSD conditions in the binary form of COMPONENT>

Fig. 5. Tuples for some rights and obligations of the BSD license

is possible) by for example retaining copyright and license notices in the source
and publishing the source code. However, even using design heuristics such as
these (and there are many), keeping track of license rights and obligations across
components that are interconnected in complex OAs quickly becomes too cum-
bersome. Thus, automated support is needed to manage the multi-component,
multi-license complexity.

6 License Architectures

Our license model forms a basis for effective reasoning about licenses in the con-
text of actual systems, and calculating the resulting rights and obligations. In
order to do so, we need a certain amount of information about the system’s con-
figuration at design-, build-, distribution-, and run-time. The needed information
comprises the license architecture, an abstraction of the system architecture:

1. the set of components of the system;
2. the relation mapping each component to its license;
3. the relation mapping each component to its set of sources; and
4. the relation from each component to the set of components in the same

license scope, for each license for which “scope” is defined (e.g. GPL), and
from each source to the set of sources of components in the scope of its
component.

Sources

Components

Licenses

Scopes 
(sets of components

 and sources, each with 
a defining license)

Fig. 6. The license architecture metamodel



With this information and definitions of the licenses involved, we can calcu-
late rights and obligations for individual components or for the entire system,
and guide heterogeneously-licensed system design.

7 License Analysis

Given a formal specification of a software system’s architecture, we can asso-
ciate software license attributes with the system’s components, connectors, and
sub-system architectures, resulting in a license architecture for the system, and
calculate the copyright rights and obligations for the system’s configuration. Due
to the complexity of license architecture analysis, and the need to re-analyze ev-
ery time a component evolves, a component’s license changes, a component is
substituted, or the system architecture changes, OA integrators really need an
automated license architecture analysis environment. We are developing a pro-
totype of such an environment [4].

We use an architectural description language specified in xADL [20] to de-
scribe OAs that can be designed and analyzed with a software architecture design
environment [21], such as ArchStudio4 [22]. We have built the Software Archi-
tecture License Analysis module on top of ArchStudio’s Traceability View [23].
This allows for the specification of licenses as a list of attributes (license tuples)
using a form-based user interface in ArchStudio4 [21, 22].

Fig. 7. Automated tool performing license analysis of instance architecture (version
information not shown)

We analyze rights and obligations as described below [4].



7.1 Propagation of reciprocal obligations

We follow the widely-accepted interpretation that build-time static linkage prop-
agate the reciprocal obligations, but appropriate license firewalls do not. Analysis
begins, therefore, by propagating these obligations along all connectors that are
not license firewalls.

7.2 Obligation conflicts

An obligation can conflict with another obligation, or with the set of available
rights, by requiring a copyright right that has not been granted. For instance, a
proprietary license may require that a licensee must not redistribute source code,
but GPL states that a licensee must redistribute source code. Thus, the conflict
appears in the modality of the two otherwise identical obligations, “must not”
in the proprietary license and “must” in GPL.

7.3 Rights and obligations calculations

The rights available for the entire system (use, copy, modify, etc.) are calcu-
lated as the intersection of the sets of rights available for each component of the
system. If a conflict is found involving the obligations and rights of linked com-
ponents, it is possible for the system architect to consider an alternative linking
scheme, e.g. using one or more connectors along the paths between the compo-
nents that act as a license firewall. This means that the architecture and the
automated environment together can determine what OA design best meets the
problem at hand with available software components. Components with conflict-
ing licenses do not need to be arbitrarily excluded, but instead may expand the
range of possible architectural alternatives if the architect seeks such flexibility
and choice.

8 Conclusion

This paper discusses the role of ecosystems in the development and evolution
of OA systems. License rights and obligations play a key role in how and why
an OA system evolves in its ecosystem. We note that license changes across
versions of components is a characteristic of OA systems and ecosystems. A
structure for modeling software licenses and the license architecture of a system
and automated support for calculating its rights and obligations are needed in
order to manage a system’s evolution in the context of its ecosystem. We have
outlined an approach for achieving these and sketched how they further the goal
of reusing components in developing software-intensive systems. Much more work
remains to be done, but we believe this approach turns a vexing problem into
one for which workable solutions can be obtained.



Acknowledgments

This research is supported by grants #0534771 and #0808783 from the U.S. Na-
tional Science Foundation, and the Acquisition Research Program at the Naval
Postgraduate School. No endorsement implied.

References

1. Oreizy, P.: Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD thesis, University of California, Irvine (2000)

2. German, D.M., Hassan, A.E.: License integration patterns: Dealing with licenses
mismatches in component-based development. In: 28th International Conference
on Software Engineering (ICSE ’09). (May 2009)

3. Scacchi, W., Alspaugh, T.A.: Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In: 5th Annual Acquisition Re-
search Symposium. (May 2008)

4. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: Analyzing software licenses in open
architecture software systems. In: 2nd International Workshop on Emerging Trends
in FLOSS Research and Development (FLOSS). (May 2009)

5. Unity Technologies: End User License Agreement (December 2008) http://
unity3d.com/unity/unity-end-user-license-2.x.html.

6. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: ICSE Companion ’09: Companion of the 31st
International Conference on Software Engineering. (May 2009) 187 190

7. Scacchi, W.: Free/open source software development. In: ESEC/FSE 2007: 6th
Joint European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering. (September 2007) 459–468

8. Brown, A.W., Booch, G.: Reusing open-source software and practices: The impact
of open-source on commercial vendors. In: Software Reuse: Methods, Techniques,
and Tools (ICSR-7). (April 2002)

9. Ven, K., Mannaert, H.: Challenges and strategies in the use of open source software
by independent software vendors. Information and Software Technology 50(9-10)
(2008) 991–1002

10. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall (2005)

11. Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K.,
Vasile, J., Williamson, A.: A Legal Issues Primer for Open Source and Free Software
Projects. Software Freedom Law Center (2008)

12. Open Source Initiative: Open Source Definition (2008) http://www.opensource.
org/.

13. Alspaugh, T.A., Antón, A.I.: Scenario support for effective requirements. Infor-
mation and Software Technology 50(3) (February 2008) 198–220

14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

15. Feldt, K.: Programming Firefox: Building Rich Internet Applications with XUL.
O’Reilly Media, Inc. (2007)

16. Nelson, L., Churchill, E.F.: Repurposing: Techniques for reuse and integration
of interactive systems. In: International Conference on Information Reuse and
Integration (IRI-08). (2006) 490



17. Meyers, B.C., Oberndorf, P.: Managing Software Acquisition: Open Systems and
COTS Products. Addison-Wesley Professional (2001)

18. Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems: an
introduction to the high level architecture. Prentice Hall (1999)

19. Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reason-
ing. Yale Law Journal 23(1) (November 1913) 16–59

20. Institute for Software Research: xADL 2.0. Technical report, University of Cali-
fornia, Irvine (2009) http://www.isr.uci.edu/projects/xarchuci/.

21. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: ICSE ’99: Proceedings
of the 21st international Conference on Software Engineering. (1999) 44–53

22. Institute for Software Research: ArchStudio 4. Technical report, University of
California, Irvine (2006) http://www.isr.uci.edu/projects/archstudio/.

23. Asuncion, H., Taylor, R.N.: Capturing custom link semantics among heterogeneous
artifacts and tools. In: 5th International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE). (May 2009)


