
International Conference on Computer Systems and Technologies - CompSysTech’2006

Low-level Floating Point Marshalling Between Different Instruction

Level Architectures

Iliya Georgiev

Abstract: The paper suggests a method for marshalling floating point numbers in network computing
based on the bit-level converting subroutines. Such subroutines are building blocks of hybrid conversion
protocols. The method provides speed that is required by real time and transaction applications. A library of
conversion subroutines is implemented that could be linked to different applications on different computers.
The library is incorporated in commercial transaction packages.

Key words: marshaling, floating point conversion

INTRODUCTION
Data Marshalling. Marshalling is a transformation (conversion), when the sending

program translates the data it wants to transmit from the representation that it uses
internally, into a message that can be transmitted over the network. On the receiving side,
the application translates this arriving message into a representation that it can then
process; that is called unmarshalling. Marshalling transformations are from big endian to
little endian byte order, between different integer presentation sizes, ASCII (UNICODE) to
EBCDIC symbol tables, serializing of several data objects, and the most difficult
transformation of floating point (FP) numbers. Some computers represent floating point
numbers in IEEE 754 formats (or its dialects), while other machines still use their own non-
standard format.

A significant problem rises any time when floating-point data are exchanged [1, 2, 3].
Let us consider some example. Program A and program B are exchanging floating-point
data over the network. Program A is working with very small numbers without using
normalization, for example - exponent (8 bits): 0116 ; fraction (24 bits): 000 09a16. Program A
is sending this number to the program B, which keeps all floating-point data normalized.
Trying to normalize the number program B causes exponent underflow. The result is fatal
loss of data. To prevent this, there must be a consistent floating-point data conversion
from one format to the other.
 Motivation and contribution of the paper. Requirements to the floating number
network marshalling are very difficult for implementation. Some of them are: performance
(for example, in transaction processing no additional overload is appreciated);
transparency (no way to issue exceptions in a case of unavoidable data or precision loss);
application and data dependence (the conversion method depends on the range and
discretization of the presented numbers) and so on.

The paper focuses on transparent low-level floating point conversion that could help
the developers of the marshallers to prevent the fuzziness of the floating-point numbers
and to create converting hybrid protocols that work with transaction-satisfied speed.

 BRIEF REVIEW OF SOME POPULAR FOATING POINT FORMATS
 Intel IEEE 754 format [4]. The formats of the floating-point data match the single
and double formats of the IEEE standard 754-1985. The extended format follows the
recommendations of the standard but is Intel specific. The short format is 32 bits long and
consists of one bit sign, 8 bits exponent (e) and 23bits significant (f, from the other name
fraction). The value is represented by the formula: N = (-1)s * 2e-127 * 1.f. The exponent is
coded in Excess 127 code. The standard can present normalized and not-normalized
numbers. The normalized fraction is greater to 1 and less than 2. The high order integer bit
is therefore dropped and assumed to have the value of 1. The long format is 64 bits long
and consists of 1 bit sign, 11 bits exponent (Excess 1023) and 52 bits fraction. The value

- II.4-1 -

International Conference on Computer Systems and Technologies - CompSysTech’2006

is: N = (-1)s * 2e-1023 * 1.f. The extended Intel format consists of 1 bit sign, 15 bits exponent
and 64 bits fraction. The value is: N = (-1)s * 2e-16,383 * 1.f

Floating point numbers with an exponent of 0xff do not represent conventional
numbers but are instead reserved to represent quantities that may not be represented as
numbers, like √-1 and infinity ∞. Plus ∞ is represented by 0x3f800000 (single), that is, a
biased exponent of 0xff and a zero significant. Minus ∞ is the same as ∞, but the sign bit
set, 1xff800000. Infinity will be the result of a floating divide of 1.0 by 0.0. Infinity compared
to infinity is considered equal, whereas infinity compared to any other number is
considered larger. The presentation of ∞ is useful in such cases as atan (∞), which can be
programmed to return the correct result of π/2. All others numbers with a biased exponent
of 0xff are considered to represent quantities that can not be represented as numbers. It is
customary to initialize all uninitialized single floating variables to integer -1, which is,
0xffffffff, a NaN (not a number).

SUN SPARC format [7]. The single and double formats are according IEEE 754
standard, the quad format is SPARC specific. The quad format is 128 bits long and
consists of one bit sign, 15 bits exponent and 112 bits fractional part of the significant. The
value of the floating-point number is represented by the formula: N = (-1)s * 2e-16,383 * 1.f.
 IBM XA/370 and SA/390 mainframe format [5]. A floating point number consists
of a signed hexadecimal fraction f and an unsigned seven-bit binary integer called the
characteristic c, which represents a signed exponent. The exponent value is considered as
mod 64 value (Excess 64 code). The fraction of a floating-point number is a hexadecimal
number because it is considered to be multiplied by a number which is a power of 16.
The floating-point numbers have a short (32-bit), a long (64 bit) and a extended (128 bit)
format. The value of a floating-point number is the product of its fraction and the number
16 raised to the power of the exponent which is represented by its characteristic: N = ±f *
16 ± (c-64)mod64. The leftmost bit presents the sign of the digit (0 - positive number, 1 -
negative number). The characteristic is the next seven bits (0 to 7) for all formats. The
fraction is constituted by the remaining bits - 6 hex digits for short and 14 for the long
format. An extended floating-point number has a 28-hexdigit fraction and consists of two
64-bit words which are called the high-order and low-order parts. The high-order part may
be any long floating point number and it is considered as the leftmost 14 hex-digits of the
28-digit fraction. The sign and the characteristic of the high-order part are for the all
extended number. If the high-order part is normalized, the extended number is considered
normalized. The fraction of the low-order 64-bit word should be considered concatenated
to the higher part of the fraction.
 HP (Tandem) Tandem Non-Stop Series [9]. The single precision floating point
number consists of 1 bit sign, 22 bit fraction and 9 bits exponent. The extended precision
floating-point number is presented in a 64-bit quadruple word. The sign is one bit, the
fraction 54 bits and the exponent 9 bits. The fraction is always normalized, to be greater to
1 and less than 2. The high order integer bit is therefore dropped and assumed to have the
value of 1. During all calculations, the sign is temporarily removed and the assumed
integer bit reinserted. The integer plus the 22 fraction bits are equivalent to 6.9 decimal
digits; the 55 bits of an extended number are equivalent to 16.5 decimal digits. If the value
of the number to be represented is zero, the sign is zero, the fraction is 0, and the
exponent is zero. The absolute-value range of 32-bit floating-point numbers is ±2-256
through ±(1- 2-23)* 2256. In decimal notation, this is ±8.64 * 10-78 through ±1.15 *1077. For
the extended floating-point numbers (64 bits), the range is the same; only the precision is
increased: ±2-256 through ±(1- 2-55)* 2256 .

- II.4-2 -

International Conference on Computer Systems and Technologies - CompSysTech’2006

 METHODS FOR FLOATING POINT CONVERSION
Because any conversion of the floating-point numbers could be data-and-application

dependent there is no general-purpose solution. Nevertheless, here we consider three
main approaches of floating-point conversion.

 Specific Data Conversion Protocol. This approach is extremely data-and-
program dependent but is effective and fast. It is convenient for distributed engineering
and scientific processing in real-time or non-stop regime. Application programs have their
specific very reliable protocol for data conversion. Some of the main principles of such
protocol are the following. Every program knows the floating-point formats used by the
partner. The data migrating from one computer to another is under control of the both
programs, i.e. every program has some supervising function for data marshalling. Every
floating-point number or group of numbers is identified during the exchange. Every
identifier explicitly defines the format of the floating-point numbers. There is a convention
how to make the conversion. Usually this is the receiving program, i.e. the program which
will use the floating-point numbers. If the data migrate between more than two programs or
computers, all programs, which are going to use these data, are converting the numbers
for their own purposes. There is a convention about the alternative: converting to the
nearest format with rounding or converting to the higher format without rounding. Usually,
the identifier of the floating-point data under transfer explicitly defines which method
should be used. Sometimes, when the transferred data are extremely important, the data
are kept in buffers, which gives a possibility of backpoints.

Common Data Conversion Protocol. This approach is less data-and-program
dependent but is slower than the first one. It is used in the engineering data bases,
distributed computer-integrated manufacturing and computer-assisted design systems.
The main principle of this approach is that all floating-point data are transferred in a ASCII
as a decimal form scientific notation (1.192092896e-07). When program A wants to send
floating-point numbers to program B, it converts the numbers in a decimal form scientific
notation. From the other side program B converts the received data from decimal form to
its floating point formats.

Floating Point Specification Table. The following main principles are the basis of
this approach. The floating-point data are transferred from the sending program “as are” or
in a decimal form scientific notation. If the data are “as are”, that means the floating-point
number are presented in the formats of the sending program A (no conversion). In this
case the integrated speed is higher. When decimal form is used, then the processing
speed is like the second approach. Together with the floating-point data the sending
program transfers a table, where all floating-point characteristic and limits are described.
The table is something like a floating-point specification of the sending architecture. The
receiving program converts the floating-point numbers to its own formats. The conversion
is based on the parameters, described in the table. Some of the parameters in
specification table [7] are: smallest positive number, guard digit, radix of exponent
representation, smallest negative number, normalization, number of bits in the significant,
presentation of zero, etc.

LOW-LEVEL MARSHALLING APROACH
In this paper a low level marshalling principle is suggested that extracts the exponent

and significant binary value of each source floating point number and constructs again the
binary form of the destination format. The supplied converting functions can be used for
the implementation of every of the described above three methods.

- II.4-3 -

International Conference on Computer Systems and Technologies - CompSysTech’2006

The presented low-level marshalling method is application program independent. The
conversion is well defined function with precise definition of the restrictions. The
application programs can choose functions from the library according to its needs.

The low-level marshalling method is data dependent. That means the converting
functions are traversing the floating-point numbers “as they are”. Rounding and other
treating of the result can be fulfilled only by the application program. All functions take a
floating-point number in some source format and return a number in the destination
format. The functions do not make big-endian to little-endian conversion and vice versa.
The functions are implemented as class methods.

Let us explain the low level marshalling principle with a conversion example
between the Tandem Non Stop single and IEEE 754 short format. The Tandem single
format consists of 1 bit sign, 22 bit fraction and 9 bits exponent:

The short format of IEEE 754 is 32 bits long and consists of one bit sign, 8 bits
exponent and 23bits fraction:

In both formats the fraction is normalized, to be greater to 1 and less than 2. The

high order integer bit is therefore dropped and assumed to have the value of 1. During all
calculations, the sign is temporarily removed and the assumed integer bit reinserted. The
conversion method has the following stages: source FP number unpacking, sign
processing, exponent processing, fraction processing, and destination number packing.
Let us identify the source Tandem number as TNS(32), and the destination number as
IEEE(32). The pseudo code follows. For simplicity and readability some special cases (for
zero, not normalized numbers) are not given.

1 23

Exponent (9)

0 31

S(1) Fraction (22 bits)

0
Exponent (8) Fraction (23 bits)

31

S(1)

// TNS(32) unpacking in S(32) for the sign, E(32) for the exponent and F(32) for
//thefraction // using bitwise AND

 S(32) = TNS(32) and 0x80000000; //sign is ready for packing
 E(32) = TNS(32) and 0x000001ff; //E(32) is the unpacked exponent
 F(32) = TNS(32) and 0x7FFFFE00; //F(32) is the unpacked fraction

// Exponent Processing, source exponent is biased by 256 (excess 256 code)
 E(32) = E(32) – 256; // subtract the bias
 if E(32) > 127 // check if the exponent can fit in the target format
 then E(32) = 255 and error code “Conversion not possible”; // issue error
 //code and use saturation encoding
 E(32) = E(32) +127; //destination exponent is in excess 127 code
 E(32) = E(32) logical left shift 23 bits; //shift the exponent to the destination place

// Fraction Processing, source exponent is biased by 256 (excess 256 code)
 F(32) = F(32) logical right shift 8 bits; //shift the fraction to the destination

// Destination number packing
IEEE (32) = S(32) or E(32) or F(32) //packing using bitwise OR operation

- II.4-4 -

International Conference on Computer Systems and Technologies - CompSysTech’2006

Below is the implementation in C/C++ language of the above Tandem to IEEE
single floating format conversion.

I

Hybrid conversion protocol. The suggested low-level conversion approach were
used to create the main marshalling functions for hybrid conversion protocols. In this
protocol, the applications programs can use the low-level marshalling function for most of
the cases. If the low- level conversion function issues some exception that the conversion
is not possible, then the floating point number can be presented as very long decimal
number and transmitted. The receiving application then converts the decimal into the
internal floating point format.

Hybrid conversion protocol is especially efficient to solve special cases [3]:
rounding, infinity, etc. On some floating-point architecture every bit pattern represents a
valid floating-point number. The IBM XA/370 is an example of this. Other format like IEEE
754 standard has NaNs (Not a Number) and infinities. Without any special analysis, there

// unions to present the numbers both
//as FP number and char strings (octets)

union ShortFloat {
 float kurz;
 unsigned long kurzint;
 octet kurzString[4];
};
union DoubleFloat {
 double doppelt;
 struct {
 unsigned long firstint;
 unsigned long secondint;
 } twoint;
 octet doppeltString[8];
 };
// ***Tandem single(32 bit)to PENT short (32 bit
// float) ***
// Host: Pentium; Sender: Tandem; Receiver:
//Pentium
//The data has been received as a string of char,
//the result of the conversion is a float
// WARNING: The Tandem dbl exponent is one
//bit more than Pentium short.
// The program checks if the mapping is possible.
// Returns: 0 - mapping OK;
// -1 -mapping impossible.

short cvTANDEMdblPENTsh (octet* FPsource,
float* FPdestination) {
 ShortFloat *psh = new ShortFloat;
 unsigned long aFloat, aSign;
long aExponent;
for (short i=0; i < 4; i++) {
psh->kurzString [i]= FPsource [i];
}
 aFloat = psh->kurzint;
//check for a signed zero
//go out with signed zero
if (0 == (aFloat & 0x7fffffff)) {
*FPdestination=psh->kurz;
delete psh;
 return 0;
}

//check for a signed zero
//go out with signed zero
if (0 == (aFloat & 0x7fffffff)) {
*FPdestination=psh->kurz;
delete psh;
 return 0;
}
// sign processing
 aSign = aFloat & 0x80000000;
// exponent conversion
aExponent = aFloat & 0x000001ff;
 aExponent = (aExponent- 256) + 127; //exponent biasing
 //check if mapping is possible
 if ((0 >= aExponent)||(aExponent > 255)) {
 aFloat = 0x00800000 | (aFloat & 0x80000000);
 if ((0 == aExponent) && (0 == (psh->kurzint &
0x00ffffff))) {
 goto goout;
 }
 // keep this for emulation call
 //if (0 > aExponent) goto noMapping;__

else if (aExponent > 255) aFloat =
0x7f7fffff | (aFloat & 0x80000000);

//noMapping:
//printf ("Mapping impossible\n"); // debugging only
psh->kurzint=aFloat;
*FPdestination=psh->kurz;
delete psh;
return -1;
}

aExponent = (aExponent <<23) & 0x7f800000;

// fraction processing
_aFloat = psh->kurzint & 0x7ffffe00;
_aFloat = aFloat >> 8; //fraction forming
_aFloat = aFloat | aExponent | aSign;

// transfer the result to the destination
goout:
psh->kurzint=aFloat;
*FPdestination=psh->kurz;
delete psh;
return 0;
}

- II.4-5 -

International Conference on Computer Systems and Technologies - CompSysTech’2006

is no good way to handle exceptional situations like taking the square root of a negative
number, other than aborting computation. Under IBM FORTRAN, the default action in
response to computing the square root of a negative number like -4 results in the throwing
of an error message. Since every bit pattern represents a valid number, the return value of
square root must be some floating-point number. In the case of System/370 FORTRAN,

is returned. In IEEE 754 arithmetic, a NaN is returned in this situation.
IMPLEMENTATION OF A LOW LEVEL FP MARSHALLING LIBRARY
The described method was used to create converting functions to/from practically

all floating point formats: IEEE 754 dialects (Intel, Sun SPARC, HP-Perspective
architecture, R 6000, JAVA RTE Virtual machine format, MS .NET Common Language
Runtime format), IBM XA/370 and SA390 formats, HP (Tandem) Non Stop format.

The library was incorporated in the following commercial applications: TransFuse©
(transaction gateway and marshaller) and CodeSync© (language converter) [8].
Information technologies applications obtain access to existing TP Monitor systems and
IBM MQ Series programs within a transaction through TransFuse.

TransFuse acts as a bridge between the CORBA and the non-CORBA world.
TransFuse binds application components together into a single transaction that can span
different TP Monitors or multiple instances of a single TP Monitor--ensuring transaction
integrity through two phase commits. In this way, transaction systems can interoperate
with each other in a single transaction.

CodeSync enables companies to maximize their investments in COBOL programs
while migrating to distributed application systems. CodeSync parses COBOL source code
and builds C++ streamable objects, Java, or DDL structures that are used by applications
which access enterprise data through TransFuse. This enables the programmer to write
new client/server code without rewriting existing COBOL programs.

 CONCLUSIONS
 In this paper, we share our research and development results applying bit-level
programming method to create well-defined functions for floating point marshalling
between most popular architectures. Such approach gives conversion speed and flexibility
for transaction and real time applications. The implemented functions are used for years in
commercial transaction gateway software and could be incorporated as building blocks in
different hybrid marshalling packages.
 REFERENCES
[1] Allison, C. Where did all my decimals go?’, The Journal of Computing Sciences in Colleges,
 vol. 21, No 3, pp. 47-58, 2006.
[2] Cheney, W., Kincaid, D. ‘Numerical Mathematics and Computing’, Thomson/Brooks Cole, 2004.
[3] Goldberg, D. ‘What Every Computer Scientist Should Know About Floating-Point Arithmetic’,
 ACM Computing Surveys, vol.23, No1, pp.5-48.
[4] IEEE Library, ‘IEEE Standard for Binary Floating-Point Arithmetic,’ ANSI/IEEE Standard No. 754-1985,
 The Institute of Electrical and Electronics Engineers, Inc., New York, August 1985.
[5] IBM Corporation, ‘Enterprise Systems Architecture/390 Principles of Operation’,
 IBM library.Order No. SA22-7201-05, September 1998.
[6] Overton, M. ‘Numerical Computing with IEEE Floating Point’, SIAM, 2001.
[7] SPARC Architecture & Assembler, SUN Microsystems.
[8] VisiBroker, ‘TransFuse User's Guide and the CodeSync User's Guide - Integrating Host
 Data with CORBA Applications’, http://info.borland.com/techpubs/ books/its/its10/programmer/itspg13.htm
[9] HP NonStop Himalaya K10000 Server Description Manual.

ABOUT THE AUTHOR
Iliya Georgiev, Prof. Dr., Department of Mathematical and Computer Sciences, Metro State

College of Denver, Campus box 38, P.O. Box 173362, Denver 80217, USA, Phone: +303 673
9403, Е-mail: gueorgil@mscd.edu, ilgeorg@gmail.com; URL: http://clem.mscd.edu/~gueorgil/.

- II.4-6 -

chuck
Highlight

