
* Copyright © 2007 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

219

THE UNTAPPED POWER OF GENERIC ALGORITHMS*

Charles D. Allison
Utah Valley State College

Orem, UT 84058
801-863-6389

allisoch@uvsc.edu

Civilization advances by extending the number of important operations we can perform
without thinking.

 – Alfred North Whitehead

ABSTRACT
Generic Programming is one of the most exciting programming paradigms to
emerge since object orientation. It allows programmers to combine the utility of
dynamic data structures and associated operations as they exist in languages like
Lisp, Python, and PHP, with the static type safety of modern object-oriented
languages. The generic algorithms found in C++'s Standard Template Library
give programmers an elegant tool to craft high-level, high-performance,
declarative code. The advantage is enhanced code readability, faster time to
project completion, and fewer opportunities to introduce bugs.

INTRODUCTION
Computer scientists are essentially abstractionists. Consider the progress of the last half

century. The essentials of machine language were abstracted as assembly language, which
in turn gave rise to high-level languages. Nowadays no one uses assembly language unless
they have to. The power of object-oriented technology in recent years has taken
programming to yet another level—creating one’s own abstractions via classes is an
everyday activity.

The Whitehead quote that prefaces this article captures the essence of abstraction; its
usefulness lies in allowing us to focus on the principal, high-level concerns of a problem
while ignoring details best left to another context. Most software developers are familiar with
templates in C++ and generics in Java and C#, but few look beyond "containers of T" to the
power of generic algorithms. This paper shows how the generic algorithms in the C++

JCSC 23, 1 (October 2007)

220

Standard Template Library (STL) support a declarative style of programming enabling very
high-level expressions, akin to using higher-order functions in functional languages.

ALGORITHMS + DATA STRUCTURES = PROGRAMS
The key design decision that made STL so revolutionary was to separate algorithms

from the data structures they work with, allowing them to interact on demand via iterators,
a sequence-traversal abstraction based on pointers. Because of this orthogonal design,
programmers can create their own algorithms that work with STL containers, or their own
containers that work with STL algorithms. Before STL, programmers either repeated code
(i.e., they implemented separate data types for lists of integers, lists of strings, etc.) or they
used collections that held typeless references to objects, like void* in C or Object in Java
and Smalltalk. The former strategy leads to maintenance nightmares while the latter loses
static type safety because of type erasure.

C++ changed all that by introducing templates. One can process a container or any type
with generic algorithms because the latter are templates, and are instantiated on demand
according to how they are used. Consider how elegantly the following code partitions a
random sequence.
int a[5];
generate_n(a, 5, rand); // Use std::rand to obtain pseudo-random numbers
int* p = partition(a, a+5, bind2nd(greater<int>(),n));

In two lines of code we have populated and partitioned a sequence of five integers such
that all those greater than n are in the range [a,p) and the rest are in the range [p,a+5).
We could provide any suitable unary function as the third argument to partition, and
could have used a sequence of any type that supports greater-than comparison. We could
even have employed generate_n to create an arbitrarily large sequence to begin with,
using an expandable vector instead of an array:
vector<int> v;
generate_n(back_inserter(v), N, rand); // N is arbitrary
vector<int>::iterator p =
 partition(v.begin(),v.end(),bind2nd(greater<int>(),n));

The back_inserter iterator adaptor wraps an STL sequence in an iterator that appends
a value to that sequence by calling its push_back() method upon assignment.

Note that partition is a higher-order function, since it expects a (unary) function as
its third argument. The greater standard function object is a binary function template, so
we use the bind2nd function-object adaptor to treat it is as a unary function. bind2nd is
a function template that takes any binary function (or function object) and returns a unary
function object that stores the original binary function and the value to be used as its second
argument, leaving the first argument open. We could have written a suitable unary function,
but it is easier and more flexible to use and adapt what STL offers. The standard function
objects are listed in Figure 1.

Category Function Object Types
Predicates greater, less, greater_equal, less_equal, equal_to, not_equal_to
Arithmetic plus, minus, multiplies, divides, modulus, negate

Figure 1 – Standard C++ Function Object Types

CCSC: Rocky Mountain Conference

221

THE STUFF OF COMPUTER SCIENCE
Sedgewick posited that “algorithms are the ‘stuff’ of computer science.” [1] The STL

provides over seventy generic algorithms distributed among five conceptual categories that
can save programmers valuable time and result in more readable code. A listing by category
follows in Figure 2.

Category Algorithms
Queries for_each, find, find_if, find_first_of, adjacent_find, count, count_if, mismatch,

equal, search, search_n, find_end
Mutators transform, copy, copy_backward, swap, iter_swap, swap_ranges, replace,

replace_if, replace_copy, replace_copy_if, fill, fill_n, generate, generate_n,
remove, remove_if, remove_copy, remove_copy_if, unique, reverse,
reverse_copy, rotate, rotate_copy, random_shuffle

Ordering Sorting
sort, stable_sort, partial_sort, partial_sort_copy, nth_element, merge,
inplace_merge, partition, stable_partition

Set Operations
includes, set_union, set_intersection, set_difference, set_symmetric_difference

Heap Operations
push_heap, pop_heap, make_heap, sort_heap

Searching
binary_search, lower_bound, upper_bound, equal_range

Permutations
next_permutation, prev_permutation

Min/Max
min, max, min_element, max_element, lexicographical_compare

Numeric accumulate, inner_product, partial_sum, adjacent_difference
Special uninitialized_copy, uninitialized_fill, uninitialized_fill_n

Figure 2 – The Generic Algorithms in C++
To further illustrate the declarative nature of using STL algorithms, suppose it is necessary
to read all words from a text file and create a new file with each string surrounded by quotes
on a line by itself. For example, an input file containing

how now brown cow

would result in the output file
"how"
"now"
"brown"
"cow"

JCSC 23, 1 (October 2007)

222

Given a suitable quoting function, a single invocation of the transform algorithm does the
job:
string quote(const string& s) {
 return '"' + s + '"';
}
transform(istream_iterator<string>(infile),
istream_iterator<string>(),
 ostream_iterator<string>(outfile,"\n"), quote);

This call to transform sends each string in the stream, infile, as a parameter to
quote, and writes the result to the output stream, outfile. The stream iterators
ostream_iterator and istream_iterator wrap a stream in an iterator object that
automatically writes or reads from its file whenever objects are assigned or fetched,
respectively.
To sum the numbers in a file, one could call accumulate:
accumulate(istream_iterator<double>(infile),
istream_iterator<double>(), 0.0);

Another version of accumulate works like the “fold-left” function found in functional
languages like ML. In ML, the following function, sqsum, which uses foldl, computes the
sum of squares of a list of integers:
fun sqsum nums = foldl (fn (a,b) => a*a + b) 0 nums;

The same thing can be accomplished in C++ as follows:
int sum_sofar(int b, int a) {
 return a*a + b;
}

int main() {
 int a[] = {1,2,3,4};
 cout << accumulate(a, a+4, 0, sum_sofar) << endl; // 30
}

This particular overload of accumulate takes a binary function as a fourth argument,
which it applies to each sequence element in turn along with the accumulated result at that
point in the execution (which is 0 initially). This same version of accumulate can also be
used to obtain the product of the numbers in a file:
accumulate(istream_iterator<double>(infile),
istream_iterator<double>(), 1.0,
 multiplies<double>());

CCSC: Rocky Mountain Conference

223

CURRICULUM CONSIDERATIONS
Students at the CS1 and CS2 levels are still learning the intricacies of algorithm

development, and it is important that they have experience implementing them from first
principles. It is recommended, therefore, to provide only limited exposure to STL algorithms
until they have mastered the concepts outlined for CS1 and CS2. Near the end of CS1 at
Utah Valley State College, we have students write simple data analysis programs, such as
finding the mean, median, mode, etc., using STL algorithms. After CS2 students have
implemented the typical searching and sorting algorithms, we encourage them to use the
comparable STL algorithms in subsequent projects. We also have a junior-level advanced
C++ programming elective course that explores STL in great depth. Students of this
particular course repeatedly extol the algorithms and function-object facilities of STL as a
satisfying milestone in their technical maturity, and as a favorite part of their undergraduate
experience. We also use STL briefly in our senior-level analysis of programming languages
course to show how functional programming can be done in C++. Students never fail to be
pleasantly surprised at the “hidden” power of a language that they thought they already
“knew” for so long.

SUMMARY
The generic style of programming supported by C++ allows students and programmers

to concentrate on the logical steps leading to a solution instead of on low-level details such
as loop control and list-traversal mechanisms. Thinking at a higher level better manages
complexity and tends to lead to correct solutions more quickly than traditional
procedural/OO practices. Neither type safety nor performance is compromised, since type
information is not lost, and the generated code is equivalent to hand-written code
performance-wise, minus the bugs. Java programmers can also take advantage of these
algorithms using the JGL Toolkit. [2] Leveraging the power of generic algorithms is
consistent with the goals of CS curricula pertaining to teaching students to use high-level
abstractions in problem solving by computer.

REFERENCES

[1] Sedgewick, R., Algorithms, Addison-Wesley, 1983, p. 4.

[2] Recursion Software, Dallas, TX. See www.recursionsw.com.

