
* Copyright © 2007 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

141

PRACTICAL COMPUTATION THEORY*

Charles D. Allison
Utah Valley State College

Orem, UT 84663
801-863-6389

allisoch@uvsc.edu

ABSTRACT
The Theory of Computation is considered essential for all CS undergraduates, yet
most of the texts in common use are more suited for graduate-school-bound
mathematics majors than today's typical CS student. This paper describes
pedagogical techniques that motivate and simplify the presentation of
undergraduate topics from the theory of computation.

INTRODUCTION
Once a subject reserved for graduate students, the study of the theory of computation

is now entrenched in undergraduate curricula. Many of the textbooks on the subject still belie
their graduate school roots by employing a high level of mathematical formalism that is lost
on many contemporary CS undergraduates. The preface to one accessible text states:

“Undergraduate Computer Science majors generally do not speak the language of
mathematical symbolism fluently, nor is it important at their level that they do more than
try… It is at best a means to an end. To those to whom it is opaque, it is a hindrance to
understanding. When this happens it is mathematically dysfunctional and a pedagogical
anathema.” [1]

This paper catalogs some pedagogical aids that have been found to appeal to the typical CS
student that is not comfortable with formal mathematical proofs.

REGULAR LANGUAGES AND FINITE AUTOMATA
It is not uncommon for students to ask early in a course on computation theory, “What

is all this good for?” This may be a good time to talk about the usefulness of state machines
in problem solving, and how to implement them in a programming language. A motivating

JCSC 23, 1 (October 2007)

142

example has students design and implement a “state machine with output” to strip C-style
comments (/*…*/) from source code. Figure 1 shows an automaton with output (Mealy
style, with 1-character memory, admittedly taking some notational liberties; drawn with
JFLAP [2]) that solves the problem.

Figure 1 – An Automaton that Filters C-style Comments

Quotes are used around input characters here so that a slash input character is not
confused with the conventional slash used to separate input from output on the transition
edge. The tilde is used to indicate “anything but” the following character(s), so for example,
starting in state q0 (labeled OUT to mean “outside of a comment”), if the input character is
a slash, we go to state q1; otherwise we stay put and echo the input character (indicated by
the meta-character ‘?’). Similarly, from state q1, if a slash is read, we output the previous
slash, because it was not part of the comment. If the input is an asterisk, we move to state q2,
otherwise, we output the original slash that took us to q1, as well as the current character that
takes us back to q0. A C++ implementation follows in Figure 2.

int main() {
 enum State {OUT, SLASH1, IN, ASTERISK2} state;
 state = OUT; // We start outside of a comment
 char c;
 while (cin.get(c))
 switch(state) {
 case OUT:
 if (c != '/')
 cout << c;
 else
 state = SLASH1;
 break;
 case SLASH1:
 if (c == '/')
 cout << c;
 else if (c == '*')
 state = IN;
 else {
 cout << '/' << c;
 state = OUT;
 }
 break;
 case IN:
 if (c == '*')
 state = STAR2;
 break;

CCSC: Rocky Mountain Conference

143

 case STAR2:
 if (c == '/')
 state = OUT;
 else if (c != '*')
 state = IN;
 break;
 }
 if (state != OUT)
 cout << "invalid comment syntax\n";
}

Figure 2 – A C++ Implementation of the Automaton in Figure 1

TEACHING REGULAR LANGUAGE THEORY
 In their seminal 1959 paper [3], Rabin and Scott introduced a technique that can be
used to establish many of the theoretical results for regular languages. The idea is to simulate
all possible paths through an automaton. For example, one can show that the union of regular
languages is regular by constructing the corresponding “combined” automaton. To illustrate,
consider the deterministic finite automata (DFA) over the alphabet {a, b} shown in Figure
3

FA1 A b
-x1 X2 X1
x2 X3 X1

+x3 X3 x3

FA2 A b
±y1 y3 y2
Y2 y4 y1
Y3 y1 y4
Y4 y2 y3

Figure 3 – Two Sample Finite Automata
Following Cohen, we use the prefix “-” to indicate the initial state and “+” for accepting
states. To construct the union, we form a composite initial state consisting of the set {x1, y1}.
At this point we consider where x1 and y1 take us with an ‘a’ as input and then with a ‘b’,
obtaining new composite states {x2, y3} and {x1, y2} respectively. Continuing in this fashion,
we obtain the result shown in Figure 4.

FA1 + FA2 A B
±{x1, y1} {x2, y3} {x1, y2}
{x2, y3} {x3, y1} {x1, y4}
{x1, y2} {x2, y4} {x1, y1}
+{x3, y1} {x3, y3} {x3, y2}
{x1, y4} {x2, y2} {x1, y3}
{x2, y4} {x3, y2} {x1, y3}
+{x3, y3} {x3, y1} {x3, y4}
+{x3, y2} {x3, y4} {x3, y1}
{x2, y2} {x3, y4} {x1, y1}
{x1, y3} {x2, y1} {x1, y4}
+{x3, y4} {x3, y2} {x3, y3}
+{x2, y1} {x3, y3} {x1, y2}

Figure 4 – Combining FA1 and FA2

The accepting states are those composite states where the x or the y component was an
accepting state to begin with. Since this table represents a simultaneous traversal through the
two original automata, their intersection is found by assigning accepting states only where

JCSC 23, 1 (October 2007)

144

Figure 5 – A Non-deterministic
Finite Automaton

both the x and y components accept (in this case, that would be only the composite state {x3,
y1}). This technique constitutes a proof by construction tractable to the majority of students.

The same technique can be used to convert a non-
deterministic automaton (NFA) to a deterministic one
(DFA). Consider the NFA in Figure 5.
Because of the lambda transition from the initial state,
the effective initial state is actually a composite, namely
{q0, q2}. Accordingly, we follow the Rabin-Scott
technique from {q0, q2} and see where it takes us. See
Figure 6.

A B
{q0, q2} {q0, q2} q1
Q1 {q1, q2} q2
{q1, q2} {q0, q1, q2} q2
Q2 {q0, q2} φ
{q0, q1, q2} {q0, q1, q2} {q1, q2}

Figure 6 – A DFA Equivalent to Figure 5
With this simple technique in hand, it is easy to construct the concatenation or Kleene

closure of DFAs. For example, to construct a concatenation of two machines, we merely
create a NFA by connecting the accepting states of the first to the initial state of the second
and convert the result to a DFA as shown. To summarize, this simple technique of tracing
multiple paths through an automaton simultaneously allows us to convert NFAs to DFAs,
and to construct the union, intersection, concatenation, and Kleene closure of finite automata,
a major component of regular language theory.

TEACHING CONTEXT-FREE LANGUAGE THEORY
The Chomsky Normal Form (CNF) is convenient for establishing a number of

theoretical results for context-free languages. To convert a context-free grammar (CFG) to
CNF involves removing null production rules. There is a straightforward “algebraic”
technique for removing nulls not readily available in the literature. Simply replace each
nullable non-terminal, N, say, with (N + λ) and “multiply”, dropping any lambdas that
remain. To illustrate, consider the following grammar.
S => ASA | aB
A => B | S
B => b | λ
Both A and B are nullable, so we make the indicated substitutions and multiply:
S => (A+λ)S(A+λ) | a(B+λ) => ASA | AS | SA | aB | a
A => (B+λ) | S => B | S
B => b | λ => b

CCSC: Rocky Mountain Conference

145

Figure 7 – Mapping a CFG to a PDA

Figure 8 – The First Stage of the
CYK Algorithm in Tableau Form

This technique finesses the confusion students often encounter when they attempt to trace
all of the possible outcomes “manually.”

A central result for context-free languages is that they can be represented either by a
CFG or a pushdown automaton (PDA). To find a PDA for a CFG is trivial if you allow non-
determinism—just push the start symbol on the stack, and then have transitions that simulate
the productions in the grammar. Starting with the non-null version of the grammar above,
the PDA (which accepts by empty stack) in Figure 7 obtains.

Going from a PDA to a CFG is more
difficult, but doable without special
techniques such as stack bottom markers
by following a procedure of Lewis and
Papadimitriou.[4] As this procedure is too
lengthy to include here, the reader is
referred to an online resource for an
explanation. [5]

The well-known CYK algorithm for
determining if a given string can be
generated by a CFG is effectively
conveyed using a triangular matrix as a
visual aid. Initially, the rules in a given
CNF grammar of the form A => c are laid

out on the first diagonal of the matrix as they apply. To illustrate, we will use the following
grammar in CNF:
S => XY
X => XA | a | b
Y => AY | a
A => a
The matrix for testing the string “baaaa” is initialized as shown in Figure 8.

{00021A14-0000-0000-C000-000000000046}For
example, since an ‘a’ can be generated from the non-
terminals X, Y, or A, all three symbols appear in the cells
corresponding to the letter ‘a’. Now the second diagonal
will be filled to determine how all substrings of length
two in the test string can be generated by using the results
in the first diagonal (which, as explained, represent
substrings of length one). For example, the leading
substring “ba” can come from XX, XY, or XA. The latter
two appear in the grammar and themselves originate
from S and X respectively, so the lower cell of the second
diagonal stores S and X. Figure 9 shows the final tableau.

JCSC 23, 1 (October 2007)

146

Figure 9 – The Completed CYK
Tableau

Filling in the lower cell in the third diagonal
corresponds to determining how the substring “baa” is
obtained, which, because of CNF, must come from a
concatenated pair of non-terminals, so the possibilities
are “b” paired with “aa”, and “ba” paired with “a”.
Using entries from previously-computed diagonals, the
first pairing (b/aa) could originate from X (on diagonal
1) paired with one of {X,Y,A} (from diagonal 2). Only
one of three possible concatenated pairs, XY, is in the
grammar, so its source, X, is entered in the
corresponding cell. To see how the second pairing
could be generated (ba/a), we combine {S,X} from
diagonal 2 with {X,Y,A} from diagonal 1, yielding
valid pairs XY and XA, which come from S and X
respectively, so {S, X} is the final result for the lower
cell in the third diagonal. The process continues until the lower right cell is complete. The
string is in the grammar if and only if S appears there.

SUMMARY

Traditional approaches to teaching the theory of computation rely heavily on
mathematical formalisms. We have presented some intuitive techniques that appeal to the
programming mindset of typical contemporary CS undergraduates.

REFERENCES

[1] Cohen, D., Introduction to Computer Theory, 2nd Edition, Wiley, 1997.

[2] Duke University. Available for download at http://www.cs.duke.edu/csed/jflap/.

[3] Rabin, MO; Scott, D (April 1959). "Finite Automata and Their Decision Problem".
IBM Journal of Research and Development 4 (2): 114-125

[4] Lewis, H. and Papadimitriou, C, Elements of the Theory of Computation, Second
Edition, Prentice-Hall, 1998, pp. 139-142.

[5] Allison, C., Procedure for Converting a PDA to a CFG, unpublished. Available for
download at http://uvsc.freshsources.com/PDA2CFG.doc

