
IS
TO

CK
PH

O
TO

Sometimes, when I can come up for air,
I ponder how software development
has changed over the years. I probably
started before many of you, back in the
day of paper tape and punch cards,
even before the innovative eight-inch
floppy disk. When I was doing classi-
fied work, a courier would take my
card deck to a service bureau’s main-
frame an hour’s drive away. I had to
wait until the next morning to find out
if I had any syntax errors. I quickly
learned that desk-checking one’s code
was not really optional. Getting a pro-
gram to compile was a major
milestone—a highly praised achieve-
ment that called for celebration.

Recently, I perused Monster.com, finding that today’s devel-
opers require skills way beyond knowing how to compile code:

Networking/Web: SOAP, HTML, DHTML, CSS, XML,
JAXP, JAXB, DOM, SAX, ASP/.NET, Sockets, RPC,
CORBA, RMI, DNS, LDAP, TCP/IP, NDS, Active Direc-
tory, VOIP, Ajax, Struts, WebLogic, WebSphere, Servlets,
Hibernate, Flash
Database: SQL, Oracle, PL/SQL, ProC, SQL Server, T-
SQL, MySQL, PostgreSQL, DB2, ADO.NET, ODBC,
JDBC, MS Access
Platforms: Windows, Linux, AS/400, J2EE, .NET, So-
laris, HP/UX, J2ME, Windows CE
Languages/Scripting: C, C++, C#, Java, PHP, Perl,
Python, VB, VB.NET, COBOL, JavaScript
Design: UML, Rational Rose, Design Patterns

That’s a lot to just have heard of, let alone be familiar with.
Software development isn’t what it used to be.

Programming languages are not what they used to be, either.
Consider how they’ve evolved. Here’s a much abbreviated time-
line, showing the major innovations selected languages have
introduced:

1954 FORTRAN (first high-level language): arrays, loops,
subprograms

1958 Algol: block scope, structured programming, recur-
sion

1959 Lisp: interpreted language, functional paradigm,
garbage collection

1965 PL/I: exception handling, concurrency, pointers,
1967 Simula-67: objects and classes, inheritance, co-rou-

tines

Tools for OurTime
by Chuck Allison

Code Craft

10 BETTER SOFTWARE DECEMBER 2007 www.StickyMinds.com

1968 Algol 68: user-defined structures, references, dynam-
ic arrays

1980 Smalltalk: graphical user interfaces, object-oriented
programming

1998 C++: type-safe generic (and multi-paradigm) pro-
gramming

These are the shoulders on which today’s languages stand.

Languages for OurTime
As of September 2007, the coding standards company

TIOBE (see the StickyNotes for a link) rated the top twenty pro-
gramming languages in order of popularity as follows: Java, C,
Visual BASIC, PHP, C++, Perl, C#, Python, JavaScript, Ruby,
PL/SQL, SAS, D, Delphi, ABAP, Lisp, COBOL, Lua, Ada, and
FORTRAN.

Three of these—PL/SQL, ABAP, and SAS—are special-
purpose languages. Visual BASIC and Delphi, while based on
general-purpose languages, are specifically targeted for GUI de-
velopment. What kind of languages are the other fifteen? Table 1
considers selected attributes of these languages.

One language in particular crosses some interesting attribute
boundaries. It compiles to native executables and is statically
typed, yet it is garbage-collected—not your everyday combina-
tion.

The D Programming Language
The D language is mostly the handiwork of Walter Bright,

developer of Zortech C++, the first native-code C++ compiler
on DOS in the 1980s. Like many of us, he wondered what C++
would be like if compatibility with C were not an issue. Unlike
the rest of us, he did something about it. The result is an effi-
cient, easy-to-use language with built-in support for many of

www.StickyMinds.com DECEMBER 2007 BETTER SOFTWARE 11

Code Craft

the features we take for granted in modern programming lan-
guages, and then some.

The obligatory “Hello, world” program is shown in listing 1.
The import statement works just like Java’s, except that mod-
ules have a one-to-one correspondence to files, as in Python.

Free-standing functions behave as in C and C++, except that
main doesn’t have to declare int as a return type (although it
can). The writef function is like C’s printf with formatting
extensions. The writefln function appends a newline.

For Java programmers, D has pretty much everything except
dynamic class loading, which doesn’t apply since it is a com-
piled language. Other Java features are there, including
interfaces and inner classes. In contrast to Java, D’s generics

(templates) are type-safe. Listing 2
is a simple stack template.

Since it is declared with the
empty [] syntax, data is a dy-
namic array. The length property
for dynamic arrays can be updat-
ed, which resizes the array. Listing
3 is a sample driver for Stack.

You use the exclamation point
to instantiate a template. Note
how the length member function
automatically acts as a property in
the assert statements (i.e., no func-
tion-call syntax is required). Note
also that instead of throwing an

underflow exception in pop and top, I just let automatic array
bounds-checking do the job. You could also use D’s built-in
support for contract programming to validate preconditions, if
you prefer, as the implementation of top in listing 4 illustrates.

Preconditions go in an in clause while postconditions go
in an out clause. Violated assertions raise an AssertError

exception. D can also enforce class invariants.

Listing 1

// hello.d

import std.stdio;

void main(string[] args) {

writefln("Hello, modern world");

}

Listing 2

// stack.d: A stack template

struct Stack(T) {

private T[] data;

public void push(T t) {

data ~= t;

}

public T pop() {

T t = data[$-1]; // $ == data.length

data.length = data.length-1;

return t;

}

public T top() {

return data[$-1];

}

public int length() { return data.length; }

}

Listing 3

import std.stdio;

void main() {

Stack!(int) s; // Instantiate template

s.push(1);

assert(s.length == 1); // Property access

writefln("top: %d", s.top());

writefln("popping %d", s.pop());

assert(s.length == 0);

try {

s.top(); // Intentional underflow

}

catch {

writefln("caught exception");

}

}

/* Output:

top: 1

popping 1

caught exception

*/

Listing 4

public T top()

in {

assert(data.length > 0);

}

body {

return data[$-1];

}

Table 1

Compiled (native code)

Interpreted

Scripting

Dynamically Typed

Statically Typed

Object Oriented

Systems Programming

Functional Programming

Garbage Collection

C, C++, D, COBOL, Ada, FORTRAN

Java, PHP, Perl, C#, Python, JavaScript, Ruby, Lisp, Lua

Perl, Python, JavaScript, Ruby, Lua

PHP, Perl, Python, JavaScript, Ruby, Lisp, Lua

Java, C, C++, C#, D, COBOL, Ada, FORTRAN

All but C (requires modern versions of Ada and FORTRAN)

C, C++, D, Ada

Lisp (100%), Perl, Python, Ruby, C++, D, Lua

Java, PHP, Perl, C#, Python, JavaScript, D, Lisp, Lua

AATTTTRRIIBBUUTTEE LLAANNGGUUAAGGEESS

occurrences of words in text files and lists the results alphabeti-
cally. Running this program on the previous sentence yields the
output in Listing 6.

The call to std.string.split takes the string returned
from std.stdio.read (which is actually a byte array, hence the
cast) and splits on whitespace. The auto keyword declares
words to be the same type as the output from split, which
here is a dynamic array of strings. Counts is an associative ar-

ray (a.k.a. a map or hash) with string
keys and integer values. The foreach
keyword is D’s generic iterator con-
struct. Associative arrays have a keys
property that returns the keys as an
array, and arrays have a sort proper-
ty that sorts the array in place. The
expression [1..$] is an array slice, in
this case comprising the second slot
through the end of the array (denoted
by $). Slices are composable, mutable
views into an array—no copies are
made.

D’s power and readability have ap-
pealed to a large audience in a short
time, hence the favorable TIOBE
ranking. Already in version 2.0, D
held its first Developers’ Conference
in August 2007 in Seattle, sponsored
by Amazon. If you are looking for a
high-level, type-safe language with the
efficiency of C++ and the convenience
of Java or C# and then some, D might
be the language for you. You can find
information regarding all things D at
digitalmars.com. {end}

Chuck Allison developed software for twenty years before be-
coming a professor of computer science at Utah Valley State
College. He was senior editor of the C/C++ Users Journal and is
founding editor of The C++ Source. He is also the author of two
C++ books and gives onsite training in C++, Python, and De-
sign Patterns.

What does D have that Java doesn’t? Here’s a partial list:
stand-alone functions, nested functions, delegates, inline assem-
bler, native-code compilation, deterministic destruction of
objects for automatic resource management (“scope guards”),
compile-time programming (a.k.a. metaprogramming), type in-
ference (see the program in listing 5), and built-in support for
automated unit testing and contract programming.

In listing 5, the sample D program counts the number of

Code Craft

Listing 5

// wc.d: Counts the number of occurrences of each word in a text file

import std.stdio;

import std.string;

import std.file;

// This function does all the work (Reads words into a list;

// computes counts; displays results)

void wc(string filename) {

auto words = split(cast(string) read(filename));

int[string] counts;

foreach (word; words)

++counts[word];

foreach (w; counts.keys.sort)

writefln("%s: %d", w, counts[w]);

}

// A simple driver: process all file arguments

void main(string[] args) {

foreach(f; args[1..$]) { // Start at second arg ([1])

writefln("\n%s:", f);

wc(f);

}

}

12 BETTER SOFTWARE DECEMBER 2007 www.StickyMinds.com

Are you marketable? In how
many of the top-twenty

languages are you fluent? Which
are your favorites?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

� TIOBE

Listing 6

text.dat:

5,: 1

D: 1

In: 1

alphabetically.: 1

and: 1

counts: 1

in: 1

listing: 1

lists: 1

number: 1

occurrences: 1

of: 2

program: 1

results: 1

sample: 1

text: 1

the: 3

words: 1

