
four parameters:
1. The numeric base of the digits (β; usually 2 or 10)
2. The fixed number of digits in the mantissa (p, aka the “co-

efficient” or “significand”)
3. The minimum exponent allowed (m; negative, of course, to

allow for fractions)
4. The maximum exponent allowed (M)

Floating-point number systems usu-
ally are normalized meaning they allow
exactly one non-zero digit before the
decimal (radix) point. Such numbers
consist of digits in some numeric base
in the following form:

±d0.d1d2…dp-1·βe
, where d0 0, 0 di<β, and m e M

In a fixed-point number system (such as the integers), num-
bers are evenly spaced. Not so with floating-point numbers.

Since each mantissa is multiplied by a power of the base, β, the
spacing is determined by the value of the unit in the last place
multiplied by βe

.
Consider a normalized number system with the parameters

β = 2, p = 4, m = -1, and M = 1. Since the first digit must be 1,
there are only eight distinct mantissas possible. In this example,

10 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

Code Craft

Piles of Sand
by Chuck Allison

IS
TO

C
K

P
H

O
TO

Computers. They’re in our cars, our
phones, our entertainment systems. They
manage our paychecks, our medical
records, our credit. In fact, for most of
us, our money consists of bits in some
computer located who-knows-where.
Computers were invented for number
crunching, but now they do just about
everything. Cool.

Somewhere along the way, however,
we seem to have forgotten how floating-
point numbers operate. Consider the
simple calculation in figure 1.

This code subtracts 0.1 from 1.0 ten
times, resulting in zero, right? Well, not
quite. The output is -7.45058e-08.

Why does this happen?
This number may be close enough to zero—or it may not

be—depending on what you’re doing. When in doubt, you can
use double instead of float, which yields a result of
1.38778e-16. Certainly we can’t expect to get any closer to zero
than that. Or can we? Over time errors like this can accumulate,
which can have serious consequences such as causing missile de-
fense systems to miss their targets.

Even stranger, if we change the numbers just a little, as in fig-
ure 2, everything works fine.

All we did was multiply the numbers involved by a factor of
five. What gives?

With computers affecting virtually every aspect of our socie-
ty, perhaps we have made a
mistake by focusing on “data
processing” while neglecting
computing’s numeric roots.
To prevent future computa-
tional difficulties, developers
need to understand floating-
point arithmetic if they are going to attain maximum accuracy.

Floating-Point Number Systems
A computer’s floating-point number system is modeled after

scientific notation as taught in school—you remember,
1.234567 x 103. Each such number system is characterized by

Figure 1

float x = 1.0f; // Set x to the floating point number 1.0

for (int i = 0; i < 10; ++i) // Run a loop ten times to

x -= 0.1f; // Subtract 0.1 from x

cout << x << endl; // Does not print 0!

Figure 2

float x = 5.0f; // Start with 5.0 floating point instead of 1.0

for (int i = 0; i < 10; ++i)

x -= 0.5f; // Subtract 0.5 ten times

cout << x << endl; // Prints exactly 0



www.StickyMinds.com JUNE 2007 BETTER SOFTWARE 11

Code Craft

specifies the parameter values in table 2 for
single precision (float) and double preci-
sion (double) numbers.

This means that the spacing between
floats is 21-24·2e = 2e-23, where e is the expo-
nent of the interval in question. So, for
example, the spacing between numbers be-
tween 1.0f and 2.0f is 2-23. We now can
discover where we’ll start dropping integers
by solving for e in 2e-23 > 1 = 20, giving e >
23. So in the interval starting with 224, the
spacing between adjacent floats is two, so
every other integer there isn’t even repre-

sentable. This explains the surprise in figure 3.
The largest 32-bit signed integer is of course

231-1, but when stored as a float, out comes
232 = 2,147,483,648. This isn’t just an off-by-one error. We get
the same value when we subtract 64, but subtracting 65 gives us
2,147,483,520. Now you know why—the spacing there is 128
(230-23=27), and the nearest number in the floating-point system is
chosen.

Sources of Numerical Error
What we’ve just seen is called “rounding error” or,

more traditionally, “roundoff.” Roundoff occurs when
a real number is not present in a floating-point number
system so the closest candidate takes its place. The ab-
solute error due to roundoff can be quite large, since
the spacing between floating-point numbers can be
large, but the relative error due to roundoff is bounded
by the quantity β1-p, which we saw earlier. This number
comes up often enough that it has a special name,
machine epsilon (ε), and is available in C++ via the
function numeric_limits<>::epsilon(), defined in
the <limits> header.

Now we can explain the first two programs in this
article. The first used the constant .1 as the loop decre-
ment value. This is a fine decimal number, but in binary
it is an infinite repeating fraction (.000110011001100…).
Since this number is not representable in a finite binary
system, the closest floating-point number is used instead.
After a while the roundoff starts to be noticeable. The sec-
ond program used the number .5, a number
exactly representable in a binary system—so no roundoff
occurs. Understanding and controlling numerical error is
a useful skill known to too few developers, including li-
brary developers.

there are three possible exponents, so there are
8 · 3 = 24 distinct magnitudes, as table 1 illustrates.
(The mantissas go down each column—each column
represents the numbers between powers of the base.
All numbers are in base 2.)

Note that the spacing between numbers in the
first interval is .001 · 2-1 = .0001 (1/16), and that it
increases by powers of two as you move each power
interval to the right. This has some interesting conse-
quences. When the numbers get large enough in magnitude in a
typical floating-point system, even some integers are not repre-
sentable, since the inter-number spacing becomes greater than
one.

This spacing between floating-point numbers is easy to cal-
culate. Since the unit in the last place is in the (p-1)-th decimal
position, it is the number β1-p (21-4 = .0012 in the example above)
times βe

, where e is the exponent of the base for the current in-
terval.

The IEEE standard for floating-point arithmetic (IEEE 754)

Table 1: Calculating the possible mantissas in a normalized number system

Bit patterns x 2-1 x 20 = 1 x 21

(1).000 .1 1 10
(1).001 .1001 1.001 10.01
(1).010 .101 1.01 10.1
(1).011 .1011 1.011 10.11
(1).100 .11 1.1 11
(1).101 .1101 1.101 11.01
(1).110 .111 1.11 11.1
(1).111 .1111 1.111 11.11
Spacing: (.0001) (.001) (.01)

Table 2

β p m M

Single precision (float) 2 24 -126 127
Double precision (double) 2 53 -1022 1023

Figure 3

// lostints.cpp: Reveals floating-point "holes"

#include <iostream>

#include <limits>

using namespace std;

int main() {

int m = numeric_limits<int>::max(); // The largest int

cout << m << endl;

float x = m;

cout << fixed << x << endl;

cout << x - 64.0f << endl;

cout << x - 65.0f << endl;

}

/* Output:

2147483647

2147483648.000000

2147483648.000000

2147483520.000000

*/



Code Craft

12 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

Don’t forget to log on to
StickyMinds.com to post comments

and questions about this or any of

the previous Code Craft, Test

Connection, or Management

Chronicles columns.

Get insight from some great industry

minds including Tod Golding, Chuck

Allison, Michael Bolton, Esther

Derby, Johanna Rothman, Peter

Clark, and many others.

Topics covered in these columns

include: the importance of code

reviews, handling overtime requests

from management, understanding

Ajax, tracking down bugs with log

files, the joy of discovery, why using

a product yourself is the best way to

test it, catching failures with regres-

sion tests, and many more.

Don’t miss your chance to chat with

an expert. Follow the links on the

StickyMinds.com homepage or

search by author.

To illustrate how difficult it can be to
craft quality libraries, figure 4 gives a
sample of results for the mathematical
function sin(x) for x = 1030 from vari-
ous sources:

Hmmm. Microsoft and Python use
the same algorithm, as do Java and
GNU. All are wrong. Windows Calcula-
tor got it right. How do I know? I’d love
to tell you, but I’ve run out of space for
this month. Let me conclude by quoting
from Kernighan and Plauger’s classic,
The Elements of Programming Style:

“Floating-point numbers are a lot like
sandpiles: Every time you move one you
lose a little sand and pick up a little dirt.”

Come back next time, when all shall
be revealed. {end}

Chuck Allison developed software for
twenty years before becoming a profes-
sor of computer science at Utah Valley
State College. He was senior editor of the
C/C++ Users Journal and is founding edi-
tor of The C++ Source. He is also the
author of two C++ books and gives on-
site training in C++, Python, and design
patterns.

“When the numbers get large enough in

magnitude in a typical floating-point

system, even some integers are not

representable, since the inter-number

spacing becomes greater than one.”

Figure 4

Microsoft Visual C++ 2005 -0.756263
GNU g++ 3.4.4 (under Cygwin) 0.00933147
Java SDK 1.5.0_08 0.009331468931175825
Python 2.5 -0.75626273033357649
HP 11C calculator -0.863505811
Windows Calculator -0.090116901912138058030386428952987

Do you routinely verify the results of
your floating-point calculations, or

do you just accept what the computer
gives you? Do you have any floating-

point horror stories to share?
�

Follow the link on the StickyMinds.com
homepage to join the conversation.




