
8 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

Code Craft

If it hasn’t happened to you yet, it will. No
matter how experienced you are, you will run
up against a programming challenge that will
overwhelm you. As Frederick Brooks states in
“No Silver Bullet: Essence and Accidents of
Software Engineering”: 

Einstein argued that there must be simplified
explanations of nature, because God is not
capricious or arbitrary. No such faith 
comforts the software engineer. Much of
the complexity that he must master is 
arbitrary complexity . . . The complexity of
software is an essential property, not an 
accidental one. 

A colleague of mine recently described a
complex PBX system he worked on at Bell
Labs. It consisted of almost seven million lines of C and C++
code. Since the success of a strategic business communication
system depended on that software, high reliability and avail-
ability were absolutely essential. Strict real-time constraints
and system integrity had to be maintained dynamically; 
otherwise the system would be unusable.

How do you successfully navigate all this unavoidable
complexity? With so much change and evolution you might ask,
“What is permanent? What is dependable? What can we take
from one project, environment, or methodology to another?”

The answer is principles—basic laws or truths on which we
can depend. Sometimes they are captured in catchy little phrases
that a novice may not fully appreciate. How many times have
you heard the following pithy yet practical proverbs?

• “Strive for loosely coupled abstractions that interact.”
• “Don’t repeat yourself.”
• “Say it in code.”
• “Test early. Test often.”

Platitudinous, to be sure, but they are guidelines based on
proven principles.

Consider “Don’t repeat yourself,” a saying made popular
by the Pragmatic Programmers. C developers have always
known that it is much better to say #define MAXLINE 81
than it is to scatter the numeric literal 81 throughout their
code. What’s the underlying principle here? “Every entity
should have only one definition.” I just made that up—maybe you
can say it better. 

Once you’ve decided that it is not a good idea to write
repetitive code, it can still sneak up on you. In learning C++,
for example, students eventually reach a point where they
have to understand how classes such as string are actually
implemented. Here’s a first go:

Later, when they learn about copy constructors and 
assignment operators, they might add code like this:

Now they have a String class that behaves like a built-in
type, complete with deep-copy semantics. But they also have
repeated code. Hopefully they see it and will refactor it into a
separate function, like dup below, and call it as needed.

Principle-Driven Development
by Chuck Allison

G
ET

TY
 IM

A
G

ES

String(const String& s) {
data = new char[strlen(s.data) + 1];
strcpy(data, s.data);

}
String& operator=(const String& s) {

if (this != &s) {
char* newData = new char[strlen(s.data) + 1];
strcpy(newData, s.data);
delete [] data;
data = newData;

}
return *this;

}

class String
{

char* data;
public:

String(const char* str = "") {
data = new char[strlen(str) + 1];
strcpy(data,str);

}
~String() {

delete [] data;
}

};

char* dup(const char* from) { // Common code
char* to = new char[strlen(from) + 1];
return strcpy(to, from);

}



Code Craft

software engineering. I first saw it in writing in Grady
Booch’s Object-Oriented Analysis and Design, where he
quoted the following from John Gall:

A complex system that works is invariably found to have
evolved from a simple system that worked . . . A complex
system designed from scratch never works and cannot be
patched up to make it work. You have to start over, be-
ginning with a simple system.

I believe this very principle spawned the incremental devel-
opment theme so widely seen in software projects these days
and that it applies to design as well as to implementation.

In the 1980s, I was part of a team developing a shop-floor
control system at a large defense contractor. A fleet of PC
workstations with touchscreens was to be networked to a
UNIX data server. Quality control specialists on the floor
would visually inspect circuit boards for defects and touch
the corresponding area on a graphic on their screens with a
stylus. My first task was to write the software that ran each
workstation. Waterfall methodologies were all the rage and
object-oriented design was no more than a gleam in Grady
Booch’s eye, yet we somehow knew to start small and to
grow the system in an incremental fashion. Here’s what my
first pass at the workstation executive looked like:

Putting that little bit of stubbed code into a main program
that compiled and executed had an enabling effect on me. I
had begun with a very simple system. The intervening months
to project completion saw many iterations adding bar code-
reading functionality, logging, etc., but everything grew from
that simple beginning.

With apologies to Yogi Berra, it was “déjà vu all over
again” a decade later. Client-server infrastructure was more
fantasy than fact then, and I was in charge of developing a
“reusable” persistence layer in a three-tier environment for
business objects whose data was stored in corporate relational
databases. “Reuse” was the buzzword du jour, but few people
actually knew how to achieve it, including us (or at least we
thought we didn’t know how). Naturally we hired consult-
ants—three rounds of them—but we didn’t get much closer to
a solution. Once again, I fell back on something simple.
Here’s the UML diagram for what I had in mind:

www.StickyMinds.com FEBRUARY 2007 BETTER SOFTWARE 9

Principles and Patterns
A basic tenet of object-oriented design dictates that clients of
a component should not depend on the details of its imple-
mentation. Instead, they should use a component’s services
through a well-defined interface. The introduction to the
Gang of Four book, Design Patterns, states:

There are two benefits to manipulating objects solely 
in terms of the interface defined by abstract classes:

1.Clients remain unaware of the specific types of objects
they use, as long as the objects adhere to the interface
that clients expect. 

2.Clients remain unaware of the classes that implement
these objects. Clients only know about the abstract
class(es) defining the interface. 
This so greatly reduces implementation dependencies 
between subsystems that it leads to the following principle
of reusable object-oriented design:
Program to an interface, not an implementation.

Every design pattern in existence adheres to this impor-
tant principle. Strategy, for instance, suggests grouping related
implementations under a common interface, giving users a
polymorphic handle to a concrete implementation through an
interface reference. The canonical class sketch illustrates the
idea like this:

But it is not necessary to always have an explicit interface
for the family of implementations. The standard C++ container
adaptors, queue, stack, and priority_queue, use low-
level sequences like vector to store their data. The definition
of queue looks like this:

Its storage mechanism, which defaults to deque, is a template
parameter. You could use vector, list, or any container of
your own making as long as it provides the expected functionality.
In other words, the expected interface is implicit. Encapsulating
what varies (the underlying implementation) and separating it
from what stays the same (the queue interface) adheres to
the principle of programming to an interface instead of an im-
plementation and, in this case, is a compile-time realization of
the principles behind Strategy.

Small Beginnings
One of my favorite principles is at the very core of effective

for (;;)
{

user_login();
build_menu();
do_option();
free_tasks();

}

template <class T, class Container = deque<T> >
class queue { … };



10 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

Code Craft

that while formal methodologies and
practices have their place, we shouldn’t
let them obscure the underlying principles
that govern the creation of quality soft-
ware. If we don’t take them too seriously,
accepted practices and methodologies
can lead us to a principle-centered state
of mind where simple, creative solutions
come more naturally. {end}

Chuck Allison developed software for
twenty years before becoming a professor
of computer science at Utah Valley State
College. He was senior editor of the
C/C++ Users Journal and is founding editor
of The C++ Source. He is also the author of
two C++ books and gives onsite training
in C++, Python, and design patterns.

work emerged. 
This principle now has an entrenched

reification in the agile world: Walking
Skeleton. The idea is to make the rudiments
of a system’s architecture tangible early
in a project’s lifecycle. From there you
simultaneously build up infrastructure
and functionality (see the StickyNotes
for more information). 

The take-away from all of this is

Not a stroke of brilliance, but I
tweaked it, made working code out of it,
and once again gained momentum from
a very simple system. After some months
of two-week iterations—during which
we solved the object-hierarchy-to-table-
mapping problem, resolved connectivity
issues, and developed a tool to produce
ready-to-use C++ code from database 
tables—a quality reusable C++ frame-

There are many principles 
that guide effective software 

development—only a few have 
been mentioned here. Which principles

have guided you to success?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware.

� References
� Walking Skeleton

The online companion to 
Better Software magazine

StickyMinds.com is the Web’s largest repository
of information on building better software. 

It‘s also the Web’s first interactive 
community exclusively engaged in 

how to produce quality results. Plug into 
weekly columns, industry news, technical
papers, tools and books guides, discussion

boards, and much more. 

www.StickyMinds.com




