OOP: THE REST OF THE STORY

Chuck Allison
Utah Valley University
chuck.allison@uvu.edu

Nathan Liddle
Utah Valley University
nliddle@gmail.com

The object-oriented paradigm has influenced software development for decades now and
has found its place in the mainstream of CS curricula. Its facility for improving program
organization is well known and today’s programmers are expected to facilely employ its
features when they apply. Few programmers, and even fewer CS curricula, however, are
cognizant of some of OOP’s more powerful aspects. Polymorphism, for example, does not
only apply to one class hierarchy, hence multimethods are part of the OOP repertoire.
Software designers should also understand how method pre-and-post conditions interact
with inheritance, since class interfaces constitute a contract with client programs. Finally, it
is important to understand that the features of object-oriented programming do not
explicitly require statically defined classes. In this paper we explore multimethods, contract
programming, and implementing objects without an explicit class type, with examples in
popular, modern programming languages.

POLYMORPHISM IN MORE THAN ONE DIMENSION

Subtype polymorphism, as taught in typical CS curricula, consists of a dynamic search in a
single class hierarchy for the most specific method consistent with a specific function call.
While this is certainly the most common case of subtype polymorphism in object-oriented
programs, it is not the only case to consider. The popularity of the Visitor Pattern [1], which
implements two-dimensional polymorphism (aka double dispatch), illustrates the utility of
methods where more than one parameter participates in runtime method selection. Visitor
requires explicit cooperation between the two hierarchies, however, and is thus limited to
the case of two dimensions.

Common Lisp supports runtime method dispatch with an arbitrary number of
dimensions.[2] In Lisp you define a “generic function”, a placeholder interface for stand-
alone functions that take parameters from multiple hierarchies. Consider the following
three sample hierarchies.

<

o —> >

o D3
x D = — <

Suppose we define a generic function where the first parameter comes from the A-B-C
hierarchy, the second from V-W-X, and the third from Y-Z. Given a valid function call, the
runtime mechanism must select the most specific method where the dynamic type of each

argument has an is-a relationship with its respective parameter in a specific
implementation for a combination of parameter types. To determine an ordering for
specificity, you can consider the three parameters as the indices of three nested loops
traversing the possible type combinations, with the first hierarchy as the set of target
objects for the outer loop, the second hierarchy for the next inner loop, and so on. For our
sample hierarchy the following sequence of type triples represents the most-general-to-
most-specific ordering of possible argument types:

(AV,Y), (AV,Z), (AW,)Y), (AW,Z), (AXY), (AX,Z),(BV,Y), (BV,Z), (BW,Y), (B,W,Z),
(BXY), (BX,Z), (C,V,Y), (CV,Z), (CLW,Y), (CW,Z), (CXY), (CX,Z)

Now suppose that only the following method combinations actually have implementations:
(AV.Y), (AV,2),(AXZ), (BW)Y), (BXZ),(CV,Z), (CXY)

The correct method can be selected by traversing the second list in reverse order until the
first combination that has an is-a relationship between each argument and its
corresponding parameter is found. For example, the call f(c,w,z) will call the (C,V,Z)
implementation since a W object “is-a” V. The following complete Common Lisp program
shows the runtime bindings for all parameter combinations.

;; Define 3 class hierarchies
(defclass A () ())
(defclass B (A) ())
(defclass C (B) ())

(defclass V () ())
(defclass W (V) ())
(defclass X (W) ())

(defclass Y () ())
(defclass Z (Y) ())

;; Define Multimethods
(defgeneric £ (pl p2 p3))
(defmethod ((pl A) (p2 V) (
(defmethod ((pl B) (p2 W) (
(defmethod ((pl C) (p2 X) (
(defmethod ((pl A) (p2 V) (p3
(defmethod ((pl A) (p2 X) (

) (

) (

(defmethod ((pl (p2 X)
(defmethod

Fh Hh Hh Hh Fh Hh Hh
QWP PO

NN NNKK K
QWP awp
IR XX
NNNNKKK K

((pl (p2 V)
;; Create objects

(setf (make-instance
(setf (make-instance
(setf (make-instance
(setf (make-instance
(setf (make-instance
(setf (make-instance
(setf (make-instance
(setf (make-instance

NKXI QWP

NN X E < Q00

;; Test Output (in 2 columns): (f
(f avy) ;7 (AVY) (f
(f v Z) ;7 (AV Z) (f
(fawy) ; (AVY) (f
(f w Z) ;7 (AV Z) (f

(A
(A
(A
(A
(B

Y)
Z)
Y)
Z)
Y)

¥)
z)
¥)
z)
¥)

I

(o ol o VI
£ << XN
I XS

(f bwz) ;7 (B WY) (f cwy) ;7 (B WY)
(f b xvy) ;7 (B WY) (f cw z) ; (CV Z2)
(f b x 2) ; (B X 7) (f c xy) ; (C XY)
(f cvy) ;7 (AVY) (f ¢ x 2) ; (C XY)
(f c v 2z) ; (CV Z)

Not all languages support multimethods, of course. For this particular example, one can
hard-code the method selection process by manually searching the implementations in
most specific to most general order, as illustrated in the C++ except below:

string dispatch(const A& a, const V& v, const Y& y) {
const B* pb dynamic_cast<const B*>(&a);
const C* pc dynamic_cast<const C*>(&a);
const W* pw dynamic_cast<const W*>(&v);
const X* px dynamic_cast<const X*>(&v);
const Z* pz dynamic_cast<const Z*>(&y);

if (pe) |
if (px)
return "(C X Y)";
if (pz)

return "(C V Z)";

}
if (pb) {
if (px && pz)
return "(B X Z)";
if (pw)
return "(B W Y)";
}

// The first parameter at this point must be an explicit A
if (px && pz)
return "(A X Z)";
if (p2z)
return "(A V Z)";
return "(A V Y)";

Although only applicable to this particular example, this code should help students
understand what languages like Lisp have to do behind the scenes to make mutimethods
work. C#, Java, Python and Perl have workarounds for programmers who need multi-
dimensional polymorphism in those languages.[3]

ENFORCING POLYMORPHIC METHOD SPECIFICATIONS

All functions have, in essence, a “contract” with clients. Given certain preconditions (e.g.,
input or expected environmental settings), the function will guarantee specific
postconditions (e.g., output or side effects).

If the function is an object method, the rules of inheritance interact with the contract. The
Liskov Substitution Principle (LSP) specifies that instances of subclasses should be able to
substitute for superclass instances without changing the contract. Liskov and Wing noted
that this can be achieved through contravariance of arguments and covariance of return
types in the subclasses. [4]

Consider a scheduler class with a method that consults an appointment database to find an
available appointment on or after a particular date. The precondition for the base class
method could simply be that the date given is a valid future date, while the postcondition

might require that the date returned would be a previously open appointment on or after
the date specified. In order for a derived class method to follow the LSP, it would have to
accept at least all of the values accepted by the base class method. The output could be
more specific, such as finding the next available weekend appointment, but it should still
provide a date on or after the one specified.

The following diagram depicts a method, f, in a class hierarchy where the inputs in the
subclass override for f are allowed to be more general (contravariance of arguments), and
the output is more specific (covariance of return types).

precondition: Base postcondition:
"X is an odd integer" int f(x) "returns an even integer"
| |
(relax) (strengthen)
i i
v | v
precondition: it fDerlved postcondition:
"x is an integer" int f) "returns 8"

Newer object-oriented languages incorporate some of these rules in the language design.
The following D language code shows these conditions in its class declarations:

class Base {

public:
int f(int x)
in {
assert(x % 2 == 1); // Pre-condition
}
out (retval) {
assert(retval & 2 == 0); // Post-condition
}
body {
int retval = x*2;
return retval;
}
}
class Derived : Base {
public:
int f(int x)
in {
assert(is(typeof(x) : int));// Less strict than x % 2 == 1
}
out (retval) {
assert(retval == 8); // More specific than x 8 2 == 0
}
body {
int retval = 8;
return retval;
}
}

The subclass class above allows a broader range of input than the superclass, and its return
type is more specific. The principles of contravariance and covariance for function
contracts are summarized in the mnemonic: “Require no more; promise no less.” [5]

OBJECTS WITHOUT EXPLICIT CLASS TYPES

The essence of object-oriented programming consists of

1. Encapsulation (separating client interfaces from implementation detail)
2. Subtyping (where one group of objects can be considered a subset of another, and
where the functionality of the former is a superset of the latter)
3. Dynamic Method Binding (where the most specific, applicable method is chosen for
execution)
Often this conceptual triplet is expressed with the terms classes, inheritance, and
polymorphism. In most object-oriented languages, however, classes and inheritance are
static software artifacts; an object’s interface and relationship to other types is determined
solely by source code processed at compile time. A great deal of flexibility is gained,
however, when the behavior of an object is left to runtime determination—dynamic
inheritance, if you will.

In static object-oriented languages, if class Y inherits from class X, then an instance y of type
Y can invoke X’s methods, and in addition can provide overrides for some or all of the
methods inherited from X. Again, the inheritance relationship between X and Y is specified
in the source code and enforced by the compiler. In a prototypal language, such as JavaScript
[5], an object can be created at runtime to “inherit” properties of another, existing object;
the latter is called the prototype of the former. Whenever an object fails to find a requested
method, it delegates the request to its prototype object. There are no classes in prototypal
languages; instead, data and methods are bound directly to an object. In the following
JavaScript example, the object x, which implements a simple stack data structure, acts as
prototype for the objecty.

x =H
data : [],
push : function (a) {
this.data.push(a);
Y
pop : function () {
return this.data.pop();
}
}i

// Make x y's prototype
var F = function () {}
F.prototype = x;

y = new F();

// Add a top method to y
y.top = function () {
return this.data[this.data.length-1];

}

y.push(1);
println(y.top()) // 1
y.push(2);
println(y.top()) // 2

The relationship between y and x in this example is established at runtime. In addition, we
have dynamically added a top method to the object y. Methods can also be removed by
setting them to null.

Besides the awkward syntax of establishing x as y’s prototype, JavaScript does not directly
support changing an object’s prototype at runtime. Because Python is universally available,
increasingly popular, and eminently readable, we have implemented a simple prototype
system in Python using a message-passing protocol, as seen in the following code excerpt.
We use a single class (Object) to achieve the desired behavior, but classes are otherwise not
used.

class Object(object):
def init (self):
self.prototype = None

def send(self, msg, *parms):
if hasattr(self, msqg):
f = getattr(self, msgqg)
return f(self, *parms) # Plain function call
else:
if not self.prototype:
raise Exception, 'no such method: + msg
return self.prototype.send(msg, *parms) # Delegate request

def set prototype(self, prototype):
assert(isinstance(prototype,Object))
self.prototype = prototype

def clone(self):
return copy.deepcopy(self)

An instance becomes a prototype via the set_prototype method, which may be called at any
time, allowing an object to change prototypes during the lifetime of a program. Methods are
invoked by Object’s send method, passing the method name as a string along with any
required arguments. The recursive nature of send supports an arbitrarily long sequence of
prototypes. The following code repeats the actions of the JavaScript example seen earlier.

Bind data and methods to x

= Object()

.data = []

.push = lambda this, a: this.data.append(a)
.pop = lambda this: this.data.pop()

MoX X X 3%

Make x y's prototype; add method “top”

= Object()

.set_prototype(x)

.top = lambda this: this.prototype.data[-1]

IS SIS S

y.send('push’',1)
print y.send('top') // 1
y.send('push',2)
print y.send('top') // 2

SUMMARY

The object-oriented paradigm offers more power and sophistication than many
practitioners realize. Multimethods, contract programming, and dynamic inheritance give
software developers useful tools for implementing quality software to solve computational
problems. We have found these topics suitable for upper division students, particularly in
an analysis of programing languages course.

REFERENCES

1. Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

2. Keene, S., Object-Oriented Programming in Common Lisp: A Programmer's Guide to
CLOS, Addison-Wesley, 1989.

3. Anice summary with reference links is found on Wikipedia at
http://en.wikipedia.org/wiki/Multiple dispatch

4. Liskov, B. and Wing,]., “A Behavioral Notion of Subtyping”, ACM Transactions On
Programming Languages and Systems, Vol. 16, No. 6, Nov. 1994, pp. 1811-1841.

5. Cline, M. and Lomow, G., C++ FAQs, Addison-Wesley, 1994.

6. Crockford, D., JavaScript: The Good Parts, O'Reilly, 2008, Chapter 5.

