
	 www.StickyMinds.com	 OCTOBER 2008	 BETTER SOFTWARE 	 15

Technically Speaking

A Gram of Prevention
by Chuck Allison

At the June 2008 Better Software Confer-
ence & EXPO in Las Vegas, I presented
a tutorial on the principles and patterns
of software design. Much of the discus-
sion focused on how understanding and
adhering to sound design principles lead
to better code. Most design principles are
based, it seems, on the notion of separa-
tion: separating things that change from
things that don’t in a given context, sep-
arating interface from implementation,
separating object creation from object
use, etc. While studying the virtues of
separating command invocation from
command internals, a tester in the audi-
ence observed that the Command pat-
tern makes program functionality easier
to test since functions can be tested inde-
pendently of their calling contexts. Being
somewhat of a focused (read myopic)
developer, I never considered how design
patterns could improve code testability.

Similarly, it seems that thinking be-
fore coding is also a Good Idea. Back
when the turnaround time of program
builds was much longer and more ex-
pensive than it is now, developers had
to be very careful crafting code, or else
they quickly ran out of time or budget
or both. While modern IDEs and agile
processes encourage a healthy project
velocity, they seem to have begotten a
generation of quick-draw programmers
who are all too willing to let their tools
do the programming. But following an I-
click-therefore-I-program methodology
does not lead to quality software. Agile
methodologies, in part a reaction to the
extremism of Big Up-Front Design, may
not only have helped small-to-medium-
sized projects break free from analysis
paralysis but also may have encouraged
a knee-jerk abandonment of almost all
up-front design. Consequently, the sorry
state of software quality throughout the
industry has seen little measurable im-
provement [1,2].

Famed software visionary Grady
Booch recently commented on how fast-

and-loose code slinging
compromises architec-
tural integrity:

In other disciplines,
engineering in partic-
ular, there exist trea-
tises on architecture.
This is not the cur-
rent case in software,
which has evolved
organically over only
the past few decades.
All software-inten-
sive systems have an architecture,
but most of the time it’s accidental,
not intentional. This has led to the
condition of most software pro-
gramming knowledge being tribal
and existing more in the heads of
its programmers than in some ref-
erence manual or publicly avail-
able resource … If I don’t have
a sense of the architecture, and I
keep piling on code, it becomes a
fetid mess [3].

Some up-front design must be per-
formed. Due diligence early on finesses
much of the needless complexity that
inevitably ensues with unarchitected
code. According to programming pio-
neer Per Brinch Hansen, “Once you
appreciate the value of description as
an early warning signal of unnecessary
complexity, it becomes self-evident that
program structures should be described
(without detail) before they are built and
should be described by the designer (and
nobody else). Programming is the art of
writing essays in crystal clear prose and
making them executable [4].”

If we can’t manage our plans and de-
scriptions, we won’t be able to keep the
code that follows under control.

This is all very old news, by the way,
as you can see by the date of the pre-
vious quote. In his Turing Award Lecture
a few years earlier, the legendary Edsger

Dijkstra asserted that:

Those who want really
reliable software will dis-
cover that they must find
means of avoiding the ma-
jority of bugs to start with,
and as a result the pro-
gramming process will be-
come cheaper. If you want
more effective program-
mers, you will discover
that they should not waste
their time debugging; they

should not introduce the bugs to
start with [5].

When I read this to an audience of
testers at STARWEST 2001, I had to
wait for the laughter to subside before
I continued, but Dijkstra knew what he
was talking about. It pays to put in the
effort to develop an architecture, to de-
sign for maximal cohesion and minimal
coupling, to use or develop languages
close to the problem domain, to create
abstractions according to sound design
principles—the list goes on. Testers will
not lose their jobs if developers can de-
liver higher quality to begin with. But
software just might be raised from its
dismal state. {end}

References:
1] “The Economic Impacts of Inadequate
Infrastructure for Software Testing.” NIST
Report, May 2002. www.nist.gov/director/prog-ofc/
report02-3.pdf.
2] Frye,Colleen. “The State of Software Quality,
Part 1.” Software Quality News, February 16,
2007. searchsoftwarequality.techtarget.com/news/
article/0,289142,sid92_gci1243311,00.html.
3] Booch, Grady. “Software’s Dirty Little
Secret.” Scientific American, June 17, 2008.
www.sciam.com/article.cfm?id=softwares-dirty-little-
secret.
4] Brinch Hansen, Per. The Architecture of
Concurrent Programs, Prentice-Hall, 1977.
5] Dijkstra, Edsger. “The Humble Programmer.”
ACM Turing Award Lecture, 1972.

Good code can and

should evolve from

clear, up-front descriptions of

the solution to the problem at

hand.

