
14	 BETTER SOFTWARE	 JUNE 2008	 www.StickyMinds.com

Code Craft

A “D” in Programming, Part 2
by Chuck Allison

IS
TO

CK
PH

O
TO

As I write this, my last official pitch for the D programming
language, I notice that D is at position twelve and climbing in
Tiobe’s ranking of the twenty most popular languages for Feb-
ruary 2008 [1]. Earlier in March, the first book on D, Learn to
Tango with D, hit the shelves [2]. In its preface, D’s designer,
Walter Bright, said:
“Amazingly, there is no language that enables precise con-

trol over execution while offering modern and proven con-
structs that improve productivity and reduce bugs … Often
programming teams will resort to a hybrid approach, where
they will mix Python and C++, trying to get the productivity
of Python and the performance of C++. The frequency of this
approach indicates that there is a large unmet need in the pro-
gramming language department. D intends to fill that need.”
Like C++, D supports down-to-the-metal programming

when you need it, and it compiles to fast-and-lean, native ex-
ecutables. It also supports generic programming and templates
in all their glory. The standard C library is available directly
from D code. Like Python, D supports modules and packages,
garbage collection, functions that behave as first-class enti-
ties, a clean (though C-like) syntax, and flexible, built-in data
structures. Like Java, D has inner classes. Like C#, D gives you
delegates, but in a more flexible way. D is a multi-paradigm
language that may be just what you need most of the time.
For many of you, I suppose the software engineering fea-

tures of D would be of most interest, but in this article I’d like
to bring to “closure” (pun intended) a running example from
previous Code Craft articles as I explore some powerful fea-
tures of the D language.

Nested Functions and Closures
Much of what we enjoy today about objects was accom-

plished in earlier days through other means. To hide data in C,
for example, you just declared a file-scope variable to be static.
The file was the container, the “object,” if you will, that held
data values not directly accessible to users. See listing 1.

This approach breaks down when you need multiple in-
stances. File I/O is too cumbersome and expensive to use as
a model for objects that contain hidden data. Object-oriented
languages have direct support for in-memory object creation at
runtime, of course, as in listing 2.

How did we ever survive without classes?
There were many ways, but I’d like to mention one that

is still important: nested functions. Nested functions are not

permitted in many modern languages but were de riguer in
languages like Lisp, Algol, PL/I, Pascal, and Ada. C dropped
nested functions for simplicity, but Python and D have brought
them back because sometimes they are superior to using ob-
jects.
To illustrate, let me return to an example I’ve used in recent

Code Craft articles: function composition. In the January 2008
Code Craft, I presented the generic C++ function composer
shown in listing 3.
A Composer is an object that takes a list of single-valued

functions (or entities callable as such) and calls them in turn
in nested fashion so you end up with f1(f2(…fn(x)…)). The
private data here is the sequence of functions, indicated by the
pair of iterators, beg and end. Since objects aren’t the only
way to hide data, let’s look at the nested-function solution in
D shown in Listing 4.
This rendition of compose is a function template, evidenced

by the (T) following its name, and it accepts a dynamic array
of functions, each of which takes a single T argument and re-
turns a T value. It returns a delegate that is callable as a single-
valued function of type T. The nested function doit iterates
through the list of functions, funs, in reverse order, applying
each function and accumulating the result as it goes. Let’s ex-
amine this more closely.

Notice that compose has only two statements: a definition
of the nested function doit and a statement that returns a

/* file1.c */

static int theData = 7; // Private data

int getData() { return theData; }

Listing 1

// MyClass.java

class MyClass {

 private int theData;

 public int getData() { return theData;}

}

Listing 2

	 www.StickyMinds.com	 JUNE 2008	 BETTER SOFTWARE 	 15

pointer to the function doit. The function doit itself uses the
array funs, which is defined in compose’s parameter list. It is
common to say that funs is in the “calling environment” of
doit.
So what happens when a pointer to doit is returned from a

call to compose? In order for funs to persist for use by subse-
quent calls to doit, it has to somehow be saved and connected
to doit. Consider how compose is used in listing 5.
The function keyword has two related uses in D: to de-

clare a function pointer and to define an anonymous function
literal (like “lambda” expressions in functional programming
languages). The first usage occurs in the definition of compose
in the first line of listing 4 and also in the first line inside main
in listing 5. In each case, funs is declared a dynamic array of
single-valued function pointers. In the second and third lines of

main in listing 5, two unnamed func-
tions are created and stored in funs.
The variable c holds the delegate

returned by the call to compose. So
what is a delegate in D? It is the very
mechanism that allows funs to persist
and be used by the instance of doit
returned by a call to compose. A del-
egate is a pair that contains a pointer
to a function (which could be a class
method) and the calling context of the
function. That calling context could
be an activation (stack frame) of an
enclosing function, as compose is for
doit, or it could be an object or class
used as context for a method. So that
its calling context—the activation of
the call to compose—is preserved for
doit to do its work, doit must be re-

turned as a delegate. That context is preserved even after com-
pose has terminated. Such a persistent calling context is called
a closure. The closure for compose is moved from the runtime
stack to the garbage-collected heap so it persists as long as the
variable c in listing 5 does.
There is no need to create a class to solve this problem, and

the nested-function approach is simpler anyway.

Whither Function Objects?
C++ popularized the use of function objects—sometimes

called functors—with the introduction of STL. A function ob-
ject is nothing more than an instance of a class that overloads
the function-call operator. To illustrate, listing 6 creates a C++
function object, gtn, which determines whether its argument is
greater than a previously stored value.
Similar code can be written in D using the opCall special

function, but the nested-function version in listing 7 is simpler.
Once again we have an outer function that returns a nested

function that has access to the outer calling context. It appears
that nested functions and closures can replace function objects

Code Craft

template<class Iter>

class Composer {

private:

 typedef typename iterator_traits<Iter>::value_type Fun;

 typedef typename Fun::result_type T;

 typedef reverse_iterator<Iter> RevIter;

 RevIter beg, end;

 static T apply(T sofar, Fun f) {

 return f(sofar);

 }

public:

 Composer(Iter b, Iter e) : beg(RevIter(e)), end(RevIter(b)) {}

 T operator()(T x) {

 return accumulate(beg, end, x, apply); // Function Applicator

 }

};

Listing 3

template<class T>

class gtn {

 T n;

public:

 gtn(T x) : n(x) {}

 bool operator()(T m) {

 return m > n;

 }

};

int main() {

 gtn<int> g5(5);

 cout<< g5(1) <<endl;	 // false

 cout<< g5(6) <<endl;	 // true

}

Listing 6

import std.stdio;

void main() {

 int function(int)[] funs;

 funs ~= function int(int x){return x*x;};

 funs ~= function int(int x){return x+1;};

 auto c = compose(funs);

 writeln(c(3)); // 16

}

Listing 5

T delegate(T) compose(T)(T function(T)[] funs) {

 T doit(T n) {

 T result = n;

 foreach_reverse (f; funs)

 result = f(result);

 return result;

 }

 return &doit;

}

Listing 4

16 BETTER SOFTWARE JUNE 2008 www.StickyMinds.com

STOP THE FREAK,
KILL THE CREEP,
BRING ORDER TO YOUR
ALM TECHNIQUE

THE COMPLETE ALM
SOLUTION ON TIME, ON
BUDGET, ON THE MARK

Without oversight, software projects can creep
out of control and cause team to freak. But with
Software Planner, projects stay on course.
Track project plans, requirements, test cases,
and defects via the web. Share documents, hold
discussions, and sync with MS Outlook®. Visit
SoftwarePlanner.com for a 2-week trial.

www.softwareplanner.com

altogether in D. These classic language constructs are as useful
today as ever. {end}

references:
1] www.tiobe.com/tiobe_index/index.htm
2] Bell, Kris; Igesund, Lars Ivar; Kelly, Sean; and Parker, Michael. Learn to
Tango with D. Apress, 2007.

bool delegate(T) gtn(T)(T n) {

 bool doit(T m) {

 return m > n;

 }

 return &doit;

}

void main() {

 auto g5 = gtn(5);

 writefln(g5(1)); // false

 writefln(g5(6)); // true

}

Listing 7

Code Craft

Have you ever wished for a language with the
power and ease of a scripting language and
the efficiency of C? Have you given D a try?

Follow the link on the StickyMinds.com homepage to join
the conversation.

Definitions
 ! Standard Defines
 Include "RESPONSE_CODES.INC" Include "GLOBAL_VARIABLES.INC"
 CHARACTER*512 USER_AGENT Integer USE_PAGE_TIMERS CHARACTER*
 CHARACTER*1024 cookie_2_0 CHARACTER*1024 cookie_2_1 Timer T_
Code
 !Read in the default browser user agent field
 Entry[USER_AGENT,USE_PAGE_TIMER Start Timer T_OBFUSCATED
 PRIMARY GET URI "http://yahoo.cHTTP/1.1" ON 1 &
 HEADER DEFAULT_HEADERS &
 ,WITH {"Accept: image/gif, image/xbitmap, image/jpeg, image/p
 "application/x-shockwave-flash, application/msword, */*", &

"http://yahoo.cHTTP/1.1"
 HEADER DEFAULT_HEADERS &
 ,WITH {"Accept: image/gif, image/xbitmap, image/jpeg, image/p
 "application/x-shockwave-flash, application/msword, */*", &

To load test your website,
you could type this:

or this:
www.webperformanceinc.com

Why code every test case by hand, when our unique software
detects and automatically configures the test cases for you –
quickly and accurately, then gives you superior reports that
are easy to understand? With Web Performance automatic
load testing, the time and money you save could increase
productivity as much as 500 percent.

For more information about how you can increase perfor-
mance and productivity using Web Performance automated
load testing, visit www.webperformanceinc.com

