
Code Craft

A “D” in Programming, Part 1
by Chuck Allison

They say there are three things you should never discuss if you
want to get along with other people: politics, sports, and re-
ligion. Since I want to stay on your good side, I’ll steer clear
of these topics, but I would like to discuss something else that
often elicits religious-like fervor from developers—favorite
programming languages.

Language Wars
What’s the best programming language? Be honest—how

many times have you defended your favorite language du jour?
And how many languages have been your “favorite” at one
time or another?

To seed the discussion, let me relate my first and only ex-
posure to COBOL, one of my “unfavorites.” In 1975, I was
standing in line, card deck in hand, waiting to submit my job
to the IBM 360 expediters at Brigham Young University. I had
about forty cards containing a Fortran program that numeri-
cally solved a system of ordinary differential equations. Com-
plex stuff. Behind me stood another student with a deck of
cards more than a foot thick—800 to 1,000 cards, I’d guess.
Impressed and intimidated, I asked the student what his pro-
gram did. “It writes a report.” Hmmm. Since I had written
reports in Fortran in considerably fewer statements, I decided
right then and there I would never use COBOL. No offense
to the many COBOL aficionados out there—I just knew it
wouldn’t work for me. My mathematical background has in-
grained within me a constant yearning for economy of expres-
sion.

One language is not necessarily better than another, of
course. For example, I prefer Python to Perl, but both are fine
scripting languages as well as general-purpose, multi-paradigm
programming languages. I see Python as cleaner and more or-
thogonal in its design—your mileage may vary. Nonetheless,
you may appreciate the following “Jedi wisdom”:

YODA: Code! Yes. A programmer’s strength flows from
code maintainability. But beware of Perl. Terse syntax
… more than one way to do it … default variables. The
dark side of code maintainability are they. Easily they
flow, quick to join you when code you write. If once you
start down the dark path, forever will it dominate your
destiny, consume you it will.
LUKE: Is Perl better than Python?
YODA: No … no … no. Quicker, easier, more seduc-
tive.
LUKE: But how will I know why Python is better than
Perl?
YODA: You will know. When your code you try to read
six months from now. [1]

Not too many years have passed since the Java “revolu-
tion,” fueled not only by Sun’s leveraging the sudden popu-
larity of the Internet but also in part as a “reaction” to C++.
I well remember public discussions at conferences and online
debunking C++ as unsafe (“pointers are evil and Java doesn’t
have pointers”—a deception) and too difficult to learn (Java is
no cakewalk either). These comments were relentlessly prof-
fered as context for evangelizing the so-called superiority of
this new programming language. I respect Java and its in-
ventors, have used the language professionally and taught it
in academia, but I still wince when I recall the bad form that
characterized Java’s rise to popularity. There is a certain irony
in the fact that the HotSpot JVM is written in C++.

That said, there is always room for improvement. Java does
have a simpler object model and a more flexible execution
model than C++. It has brought portable concurrency and GUI
tools to Joe Programmer. The relatively new Scala language is
in turn an improvement on Java, combining high-level, func-
tional programming constructs with static type safety. Scala
translates to Java byte code providing access to the massive
Java library. The Groovy language is a similar alternative but
with dynamic typing.

Alas, it’s been twelve years since Java made its debut, and
its popularity seems to have peaked as it is finding its niche
mainly in enterprise applications. Just today I found the fol-
lowing in an InfoWorld article entitled, “Java is Becoming the
New COBOL”:

“Java, the oldest new programming language around,
is falling out of favor with developers. When it comes
to developing the increasingly common rich Internet ap-
plications, Java is losing ground to Ruby on Rails, PHP,
AJAX and other cool new languages … Now that Java is
no longer the unchallenged champ for Internet-delivered
apps, it makes sense for companies to find programmers
who are skilled in the new languages. If you’re a Java
developer, now’s the time to invest in new skills.” [2]

iS
TO

CK
PH

O
TO

14	 BETTER SOFTWARE	 APRIL 2008	 www.StickyMinds.com

Code Craft

New Favorite
In recent Code Craft articles, I praised the relatively new D

programming language. D combines the speed and power of
C++ with desirable features of many other programming lan-
guages, such as Java, C#, Eiffel, and functional programming
languages. D is high-level, readable yet concise, multi-para-
digm, and efficient. In this article and the next I’ll conclude
(for now) my D evangelizing by exploring a few of its more
noteworthy features.

Foremost for me is the fact that D is strongly typed, com-
piles to native code, and yet is garbage collected. Currently this
is a singular achievement in the programming world. But there
is much more about D to recommend.

Code Consistency with Scope Guards
Unless carefully planned for, runtime errors can easily place

a program in an inconsistent state. Resource management is a
typical example. Suppose you have a situation similar to the
function in listing 1.

A Java-like solution uses a finally block similar to the D
program in listing 2.

A C++-style approach encapsulates resource management
into an object’s constructor and destructor. This is the well-
known Resource Acquisition Is Initialization (RAII) idiom,
shown in listing 3.

This approach makes f’s code concise, but it also requires
an auxiliary class.

D supports RAII, but it also lets you explicitly supply spe-
cific cleanup code for when execution exits a scope, as shown
in listing 4.

The scope statement, called a scope guard, activates a code
block that may or may not run when a scope is exited. Figure
1 lists the three scope-guard options.

The utility of the scope statement becomes more obvious
with multi-step resource acquisition requiring rollback seman-
tics in the case of failure. Consider the three-part transaction
in listing 5.

In this case, we want all three operations to succeed or fail
together. RAII alone will not solve this, and the try-finally
approach is not pretty—witness listing 6.

Things only get worse with more pieces in the transaction.
Not so with D. Listing 7 shows how easily you can back out of
complicated transactions with D’s scope statement.

When execution leaves a scope, all scope-guard blocks that
have executed are visited in last-in-first-out order, so transac-
tions roll back gracefully, and thirteen lines of code become
six. If risky_op2() is the first to fail, only undo_risky_op1()
executes as the execution propagates out of g. Likewise, if
only risky_op3()fails, then undo_risky_op2() executes, fol-
lowed by undo_risky_op1().

void f() {

 acquire();

 risky_op(); // Might fail

 release();

 writeln(“f succeeded”);

}

Listing 1

void f() {

 acquire();

 try {

 risky_op();

 writeln(“f succeeded”);

 }

 finally {

 release();

 }

}

Listing 2

class Resource {

public:

 Resource() {

 cout << “resource acquired\n”;

 }

 ~Resource() {

 cout << “resource released\n”;

 }

};

void f() {

 Resource r;

 risky_op();

 cout << “f succeeded\n”;

}

Listing 3

void f() {

 acquire();

 scope(exit) release();

 risky_op();

 writeln(“f succeeded”);

}

Listing 4

	 www.StickyMinds.com	 APRIL 2008	 BETTER SOFTWARE 	 15

scope(exit)	 the code always runs (like finally)
scope(failure)	 the code runs only if an exception occurs
scope(success)	 the code runs only if no exception occurs

Figure 1

void g() {

 risky_op1();

 risky_op2();

 risky_op3();

 writeln(“g succeeded”);

}

Listing 5

In Part 2, I’ll show how programming with nested functions
and delegates can be more concise and powerful than classes
and objects. {end}

References:
1] www.netfunny.com/rhf/jokes/99/Nov/perl.html
2] www.infoworld.com/article/07/12/28/52FE-underreported-java_1.html

Code Craft

16	 BETTER SOFTWARE	 APRIL 2008	 www.StickyMinds.com

What have been your favorite
languages over the years?

What is your opinion of D’s
scope statement?

Follow the link on the StickyMinds.com
homepage to join the conversation.

void g() {

 risky_op1();

 try {

 risky_op2();

 }

 catch (Exception x) {

 undo_risky_op1();	 // Back-out op1

 throw x; 		 // Rethrow exception

 }

 try {

 risky_op3();

 writeln(“g succeeded”);

 }

 catch (Exception x) {

 // Back-out op1 and op2 in reverse order

 undo_risky_op2();

 undo_risky_op1();

 throw x;

 }

}

Listing 6

void g() {

 risky_op1();

 scope(failure) undo_risky_op1();

 risky_op2();

 scope(failure) undo_risky_op2();

 risky_op3();

 writeln(“g succeeded”);

}

Listing 7

