rs br

ude.
Hosure
ystone

1t in

1c€ On

in the
51,

is. In
Sci

111,
2 [0th

ACM-
pages

nming:
»;npani()”
: pages

’f, 2005

2

yod

lv\/ York,

ynard

D: A PROGRAMMING LANGUAGE FOR OUR TIME-

Charles D. Allison
Utah Valley University
Orem, UT 84058
801-863-6389
chuck.allison@uvu.edu

ABSTRACT

The D Programming Language is a hybrid of C++ and modern scripting
languages: it compiles statically to native code, but is also garbage collected.
It is a multi-paradigm language, supporting imperative, object-oriented and
functional programming styles, and has a number of software engineering
features built-in. This paper explores how D is suitable for courses in the CS
curriculum as well as for the workplace.

INTRODUCTION

Modern, general-purpose programming languages in widespread use include Java,
PHP, Python, C#, and Ruby.[1] All of these are interpreted languages, although Java and
C# have a compile step that transforms source code to byte-code. The other three
lnguages are dynamically typed and are considered to be “scripting languages”, since
they excel at quickly crafting small software solutions. All have varying degrees of
Support for the functional programming paradigm, which is enjoying a resurgence as

Software developers are rediscovering the utility of higher-level functions and applicative
Programming.

While programs written in C++ tend to have superior performance, C++
Efsofimmers must manage memory manua'lly, which is tedious and error prone. C++is
L own .for its complem.ty. The popularity of languages such as Java an'd C.# are due
i to being more accesmble_to the average programmer than is C++, which is fraaght

arcane syntax rules and pointer “gotchas”. It is not uncommon for software projects

0 g )
ne;lse a scripting language such as Python whenever possible and C++ only when
essary‘

%

Wi Ozﬁlgfht ©2010 by the Consortium fo§ Computing Sci.ences in Colleges. Permission to copy

distributezefan or part of this 'material 1s granted provided th.at the c.opies are not made or

Pub featiop or dl_rect commercial advantage, Fhe CCSC copyrlght notice and the t.1t1e of the

Sortg and its data appear, and notice is given that copying is by permission of the
Hum for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
Or Specific permission.

On
Ce

113




JCSC 26, 2 (December 2010)

THE D PROGRAMMING LANGUAGE

While it is unreasonable to expect a single programming language to be ideg] forg)
purposes, it is not unreasonable to envision a language that has the power of a |ap Uag
like C++ and the ease of use of a language like Python. Walter Bright, chief architey age
implementer of the D programming language, explained how such a vision led the
creation of this new language:

“Often, programming teams will resort to a hybrid approach, where they wjj i
Python and C++, trying to get the productivity of Python and the performance of Ch
The frequency of this approach indicates that there is a large unmet need iy thé
programming language department.

“D intends to fill that need. It combines the ability to do low-level manipulaﬁOn of
the machine with the latest technologies in building reliable, maintainable, portable, high.
level code. D has moved well ahead of any other language in its abilities to support ang
integrate multiple paradigms like imperative, OOP, and generic programming.” [2]

D combines many modern language features with the efficiency of C++. D hyg,
familiar, C-like syntax and has language support for garbage collection, higher-leyy
functions (including lambda expressions), generics, compile-time meta-programming
concurrency, unit testing, and programming by contract.

HELLO, D

The following D program serves as a point of departure for discussing the structyre
and features of the D language.

hello.d: Greet the usesr or the entire world
import std.stdio:;
wvold main(string[] args) |

if (args.length > 1)
foreach (a; args[1..5])
writeln("Hello " ~ &);

1
e
4]
1

writeln("H=llo, Modern World™):

If command-line arguments are present, each argument to this program is greeted
on a line by itself. Otherwise the string “Hello, Modern World™ is displayed. For those
that prefer a graphical development environment, IDEs are available for D and there is
a D plugin for the Eclipse editing system.

As the dot between std and stdio above suggests, modules can be grouped
hierarchically. The variable args is a dvnamic array of strings. The *..” notation denotes
an array slice. a contiguous subset of an array inclusive of the first position and exclusive
of the last. The dollar sign is an abbreviation for the length property of an array. so the
expression args|1..8] is equivalent to args[1..args.length] and represents the elements
in positions 1 through args.length-1 (args|0] is the program name.) Slices are 1707 copies;
they represent a mutable reference range of the original array, and are therefore very
efficient. The type of the iteration variable, a, in the foreach loop is deduced by its
context. The ~ operator is the array concatenation operator.

114




<D

CCSC: Rocky Mountain Conference

D also supports associative arrays, also known as maps, dictionaries, or hash tables.
Jociative arrays use normal array syntax, even in their declaration, as the following

program illustrates.

Jf weod: Displavs the word count of & text fale
yoid wo(string filensees] |
string[] words = apliticastistring) read(filensames));
int[string] counts;
foreach [(word; words) +4+counts[word] !
forsach (w; counts.kKeys.sort) writefln("i=s: 34", w, count=[w]);

vold mainistringl[] args)
if {args.length =

The foreach construct supports a special form for associative arrays, where the
iteration variables represent the key and value, respectively. Associative arrays have a
keys property that returns a new dynamic array of the keys of each association. The sort
property sorts an array in place (using <) and returns the array by reference.

'UNCTIONS AND PARAMETERS

Functions can be defined at file scope, in classes, and inside other functions in D.
Some functions can even execute at compile time. Consider the following program
adapted from the documentation on the official D website (digitalmars.com):

// ctfe.d: Tllustrates compile-time function execution

int sguare (int i) { return 1 * 1i;

Vold main()
Static int n = aquare (3] // compile time executign
writefln(textin);
Writefln|text (square (4))): i FUBE TS SREEHESEn

The first call to square actually runs at compile time because the function argument
i itey ‘al, and the result is being used to initialize a static integer, hence n is initialized

09 before main runs.

Function parameters can have the following attributes:

in (read-only copy of the calling argument)

out (write-only lvalue referring to the calling argument)

ref (pass by reference)

lazy (argument evaluated on demand only in called function)
const (locally read-only, as in C++, but fully transitive (“deep™))
immutable (argument allows no changes anywhere, once initialized)




JCSC 26, 2 (December 2010)

A function parameter defined without one of these attributes defaults to pagq
value.

S‘by\

The lazy storage class defers evaluation of an argument until it is actually Use
the called function, and the argument is evaluated on each access, as the fOHOW In
program illustrates. p

woid printif(bool kb, lazy string s) 1
if (k) |
writelnis);
writeln(s]

string fistring
writeln ("L os
return =;

,1| mw

S
lled™);

wold mwadin()
writeln("first oall to printif...™);
printif(false, f£i"this won't print™));
writeln("second call to printif. ’);
printifitrues, f£("this will pllnt

The first call to printif shows that the call to f in its second argument is n
evaluated, since the first argument is false, while second call to printif evaluates s each
time it 1s accessed.

HIGHER-ORDER FUNCTIONS AND FUNCTIONAL PROGRAMMING

Functions can be passed to and from other functions in D, and functions can be
defined anonymously in lambda expressions. The following example defines a function,
gtn, which returns an anonymous function closure

S gtn.od: Creates 2 "greater—-than-n Ffunction
auto gtniint ) 1
return (int m) {return m > nii; S (parm list) o+ {Rody)
Kl
;
wold maini) |
guto g& = gtnis) ; urns the "> £V Function

writeln(gsi1l));
writelnigS (6]l ;

A

o

D"

op
ac
ite




CCSC: Rocky Mountain Conference

The return type of gtn is bool delegate(int), a closure that takes an int and returns
j00l, but it’s not necessary to declare it as such. since the auto keyword infers the type
bfgs from its intitializer. A delegate holds a pointer to the function to execute, as well
25 a pointer to the execution environment for the function. In this case the execution
egvironment is the current activation record for gtn, which is automatically moved from
he stack to the garbage-collected heap so that n can be accessed later.

Uy

Applicative programming is enforced in D with pure functions, which must have
parameters non-mutable parameters, and must neither read nor write any non-local,
mutable state nor call an “impure” function. The following iterative version of a
Fibonacci number function is a pure function.

pure ulong fib(const aint o) | Note pure Keyword
if (n < Z) return n;
ulong 2 = 1, b = 1;
foreach (i; Z..n) | Leronder: exclusive of n
wlong © = b;
b += &
a = t;

i
recurn kb;

~ USSOFTWARE ENGINEERING SUPPORT

D provides language features to ensure code reliability. Suppose a sequence of three
Operations must succeed or fail together. A typical try-catch-finally approach that
?Chieves rollback semantics is somewhat complex, but D offers a simpler alternative via
s scope statement:

Eizky opli);
Scope (failure) undo risky opl():

vold gi) o

tisky opZ i)
Swope (failure) undo risky op ()
rizsky op3 () ;

writeln "y succeeded™)

——

. The scope statement activates a code block that may or may not run when a scope
Sexited. The three scope-guard options are:

L} the code always runs (ke finally)

lure) the code runs osdy if an exception occurs

SEOpe (success) the code runs only if #o exception occurs

. When execution leaves a scope, all scope-guard blocks that have executed are
Visited in last-in-first-out order, so transactions roll back gracefully.

117

A




JCSC 26, 2 (December 2010)

Programming by contract[3,4] is supported in D with c/ass invariants, and
preconditions and postconditions. The following example, which reprege

nCtiQ

. . . : : nts
beginnings of a value type that simulates rational number, illustrates a class invarjy i

> : : : nt
a method precondition, as well as unit testing and operator overloading. g

struct Rational

int nuwm = O, den = 1;
inwvariant () |
azsertiden » 0 &£ godinwn, den) == 1)
¥
thisi(int n, int d = 1) S Compstructor
in 1
assert(d !'= 0); 4 Pre-—-condition
¥
hody 4
nuam = g
den = d;
int diwv = godinwa, den) !
if (den < 0O)
diwv = —-diw;

num /= divwv;
den /= divw;

1,
I

Eational opBinsrvistring op) (Rational r) if (op == "+") |
return Rational (man*r.den + den*r.nwn, den®r.den);

auto rl = Bational({1,2), r2 = Bationsli3,4), r3i = rl + ri;
C(r3 5 & 3 ]

L

Assertions are placed in in and out blocks, respectively, for preconditions and
postconditions. When either or both of these are present, the function body must itself
appear in a body block. The separation of contract conditions from the body of a function
allows the compiler to combine them properly in inheritance hierarchies. Since
preconditions are contravariant (i.e., they can be weakened in subclass methods) and the
invariants and postconditions are covariant (they can be strengthened in subclass
methods), D automatically checks that at least one of the applicable preconditions is met
and that all of the applicable invariants and postconditions are satisfied when dispatching
polymorphic methods.

CONCLUSION

The D programming language combines many valuable and popular features from
both classic and modern languages. Its design emphasizes a clear, high-level, familiar (-
like syntax as well as pragmatics important to effective software development. It also
offers robust support for the imperative, object-oriented, and functional programming
paradigms. The author has used it with favorable results for years in an upper-division
course on the analysis of languages to illustrate important programming constructs in2
modern, strongly typed language.

118




CCSC: Rocky Mountain Conference

ogFERENCES

1] The Tiobe Index,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html, retrieved
June 2010.

[2] -Bell, K., Igesund, L., Kelly, S., Parker, M., Learn to Tango with D, aPress, 2007,
Foreword.

[3] Parnas, D., A Technique for Software Module Specification with Examples,
CACM, 15(5), May 1972.

[4] Meyer, B., Applying "Design by Contract", Computer (IEEE), 25(10), October
1992, pp. 40-51.

119




